Model Selection for Self-supervised Anomaly Detection

Jaemin Yoo

School of Electrical Engineering

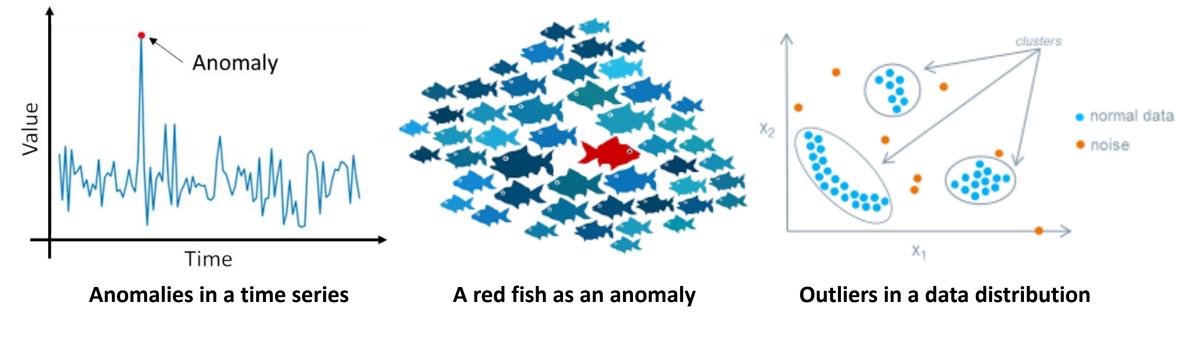
Outline

1. Introduction

- 2. Preliminaries: Benchmark Study
- 3. Approach 1: Offline Selection
- 4. Approach 2: End-to-end Learning
- 5. Conclusion

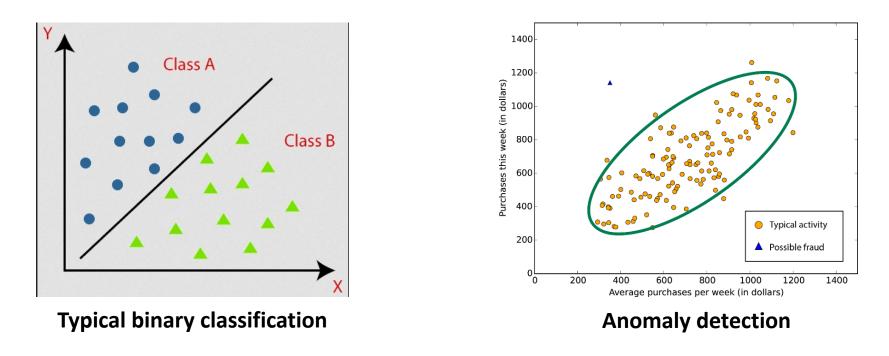
Anomaly Detection

- Anomaly detection (AD) is a problem to find anomalies from data.
 - Anomalies are common in many real-world datasets.
 - Essential to improve the reliability and efficiency of a system.



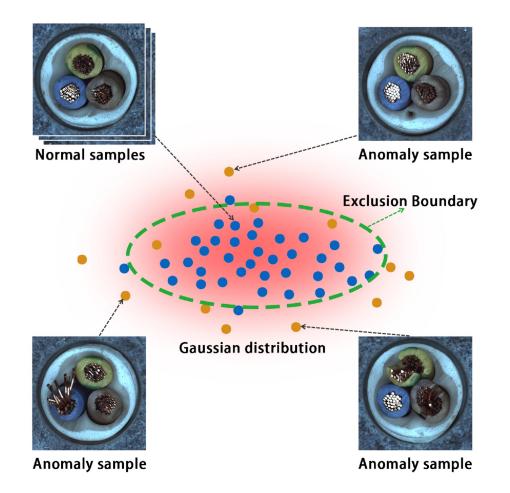
Challenges of Anomaly Detection

- Challenge 1: Training labels are insufficient or even nonexistent.
- Challenge 2: Anomalies are scattered without creating a cluster.



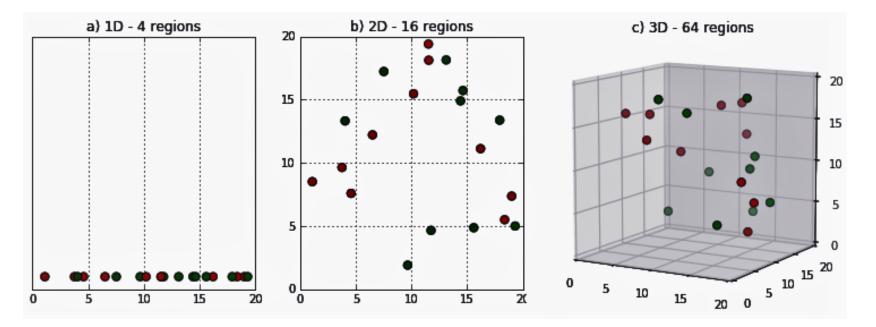
Unsupervised Solutions

- Traditional approaches on AD rely on unsupervised learning
 - 1. Find a probability distribution p_X
 - that describes normal data.
 - 2. A point *x* is anomalous if
 - it is far from the center (i.e., low $p_X(x)$).
- Also known as *density estimation*.



Limitations of Unsupervised Solutions

- Limitation 1: Need a lot of data samples to accurately learn $p_X(x)$.
 - This is problematic especially with high dimensionality.
 - Also known as the *curse of dimensionality*; # of data samples $\propto 2^{D}$.



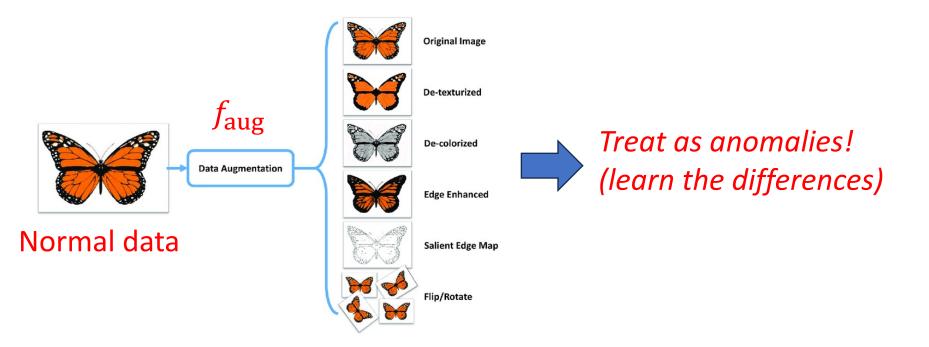
Limitations of Unsupervised Solutions

- Limitation 2: It is hard to incorporate domain knowledge of data.
 - What if we have **some knowledge** on how anomalies look like?
 - What if we know that there can be some cracks on the surface of a pill?

Limitations 1 & 2 suggest we need a *better paradigm* for AD!

Self-supervised Anomaly Detection

- Self-supervised anomaly detection (SSAD) can be the future.
 - Idea: Train a classifier that can detect pseudo anomalies from the inliers.
 - Put differently, train a classifier that can detect the **artificial differences**.



Example of SSAD

• How to train a detector with SSAD:

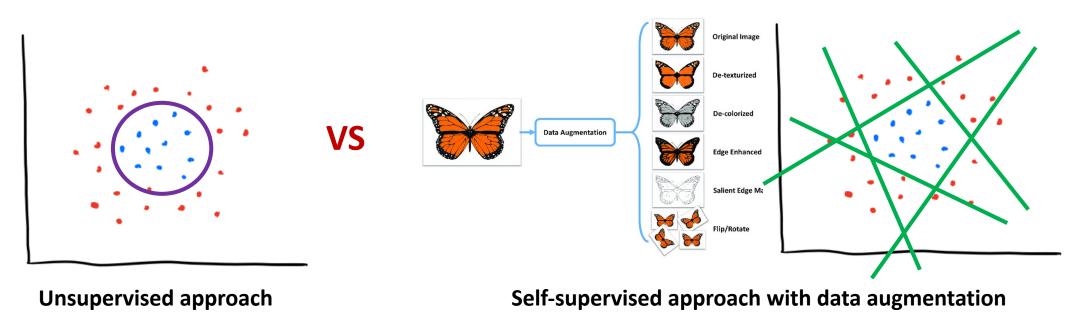
- 1. Suppose we have a (training) set \mathcal{D}_{trn} of normal data.
- 2. Create an augmented set $\mathcal{D}_{aug} = \{f_{aug}(x) | x \in \mathcal{D}_{trn}\}.$
- 3. Create a labeled dataset $\mathcal{D}_{new} = \{(x, +1) | x \in \mathcal{D}_{trn}\} \cup \{(x, -1) | x \in \mathcal{D}_{aug}\}.$
- 4. Train a **binary classifier** ϕ from \mathcal{D}_{new} .

• How to actually use ϕ in test time:

• For each test data $x \in \mathcal{D}_{\text{test}}$, we say that x is an anomaly if $\phi(x) \approx -1$.

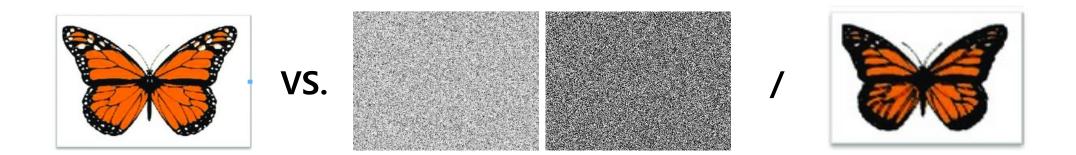
Meaning of Self-supervision

- **Density estimation** is *filling in the space* with dots (= data).
- Self-supervision is *drawing many boundaries* around the data.
 - It is less sensitive to the data dimensionality.



Why SSAD is Successful

- SSAD allows us to focus on a plausible subspace.
 - It is not necessary to consider every possible data $x \in \mathbb{R}^{D}$.
 - E.g., we won't expect white noise as an actual anomaly.
 - Only a few possible types of pseudo anomalies are enough.



Research Motivation

- Note that SSAD contains many important hyperparameters.
 - The augmentation function f_{aug} , the objective function, etc.
 - Hyperparameter choice determines the success of SSAD.
- However, model selection is especially challenging in SSAD.
 - Since no labeled validation data are given.

Q: How can we perform HP search on SSAD without labels?

Outline

1. Introduction

2. Preliminaries: Benchmark Study

- 3. Approach 1: Offline Selection
- 4. Approach 2: End-to-end Learning
- 5. Conclusion

Research Goal

- Goal: Study how important the choice of f_{aug} is on SSAD.
- Idea: Introduce the alignment between f_{gen} and f_{aug} .
 - f_{gen} is the internal anomaly-generating function in test data.
 - E.g., if x is a normal image, $f_{gen}(x)$ is an anomalous image.
- Hypothesis: SSAD works better if f_{gen} and f_{aug} are aligned well.

Anomaly-Generating Function

- f_{gen} transforms a normal sample x into an anomaly $f_{\text{gen}}(x)$.
 - Hard to formally define in real data.

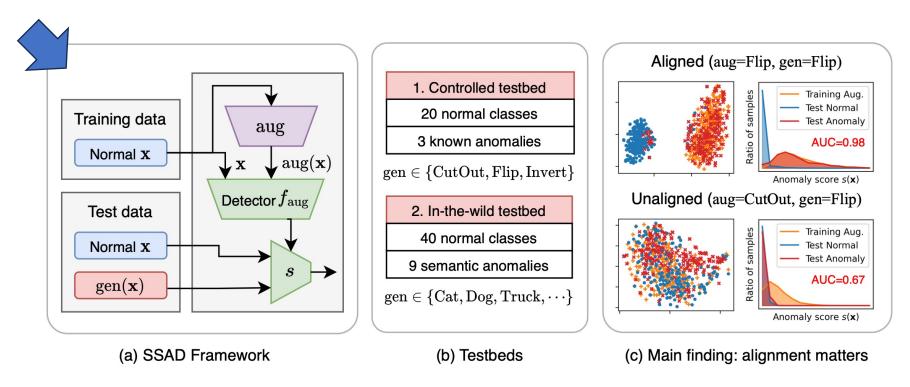
Normal data

Anomaly

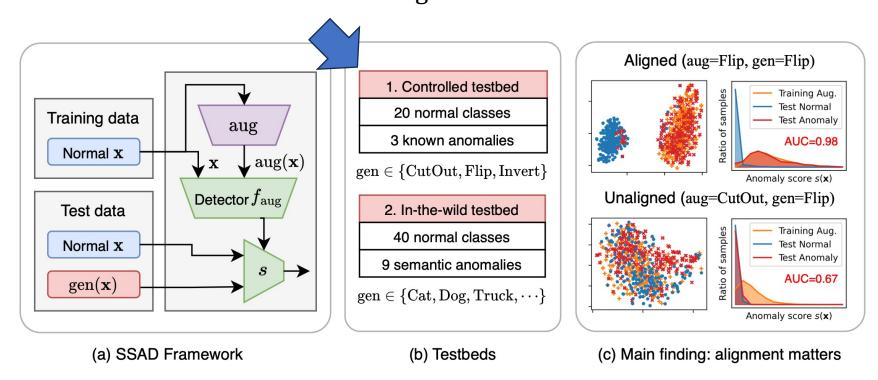
fgen

• (Left) Simple illustration on how SSAD works:

• The score function s is used to produce the final output.

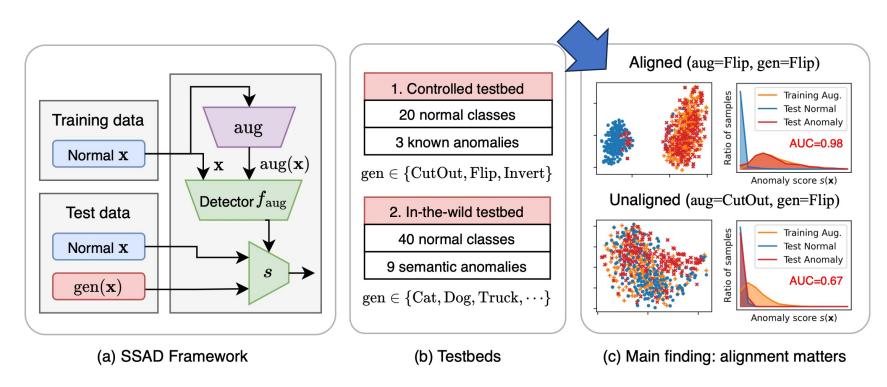


- (Center) Two testbeds: Controlled and in-the-wild testbeds.
 - We create anomalies with known f_{gen} in the controlled testbed.



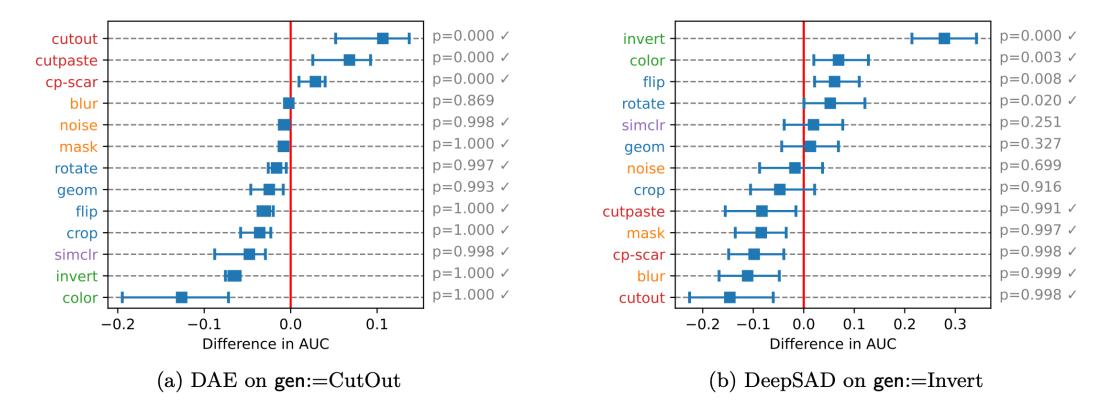
• (Right) Test AUC is high with the high alignment.

• Embeddings of augmented data are test anomalies are matched.



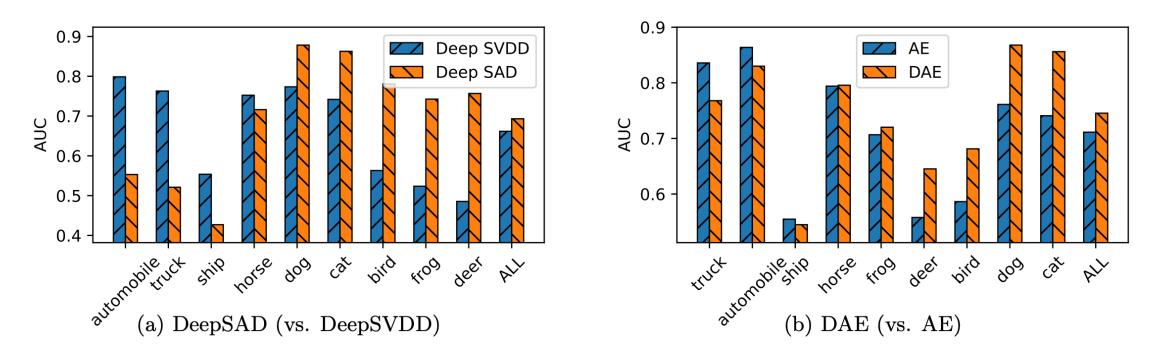
Main Result

• Performance is affected a lot by the semantic alignment with f_{gen} .



Bias in Prediction

- Self-supervision creates a bias in the prediction distribution.
 - Airplane as the inlier, and Rotation as f_{aug} .



Outline

- 1. Introduction
- 2. Preliminaries: Benchmark Study

3. Approach 1: Offline Selection

- 4. Approach 2: End-to-end Learning
- 5. Conclusion

Research Question

- Problem: We focus on transductive anomaly detection.
- Given:
 - 1. Normal-only training data \mathcal{D}_{trn} .
 - 2. Set $\{\phi_i\}_i$ of detectors trained with f_{aug} having different HPs.
 - **3.** Unlabeled test data \mathcal{D}_{test} containing normal data and anomalies.
- Goal: Find a loss function ${\mathcal L}$ such that

 $\phi^* = \operatorname{argmin}_{\phi} \mathcal{L}(\cdot)$ is the best detector.

Motivation 1

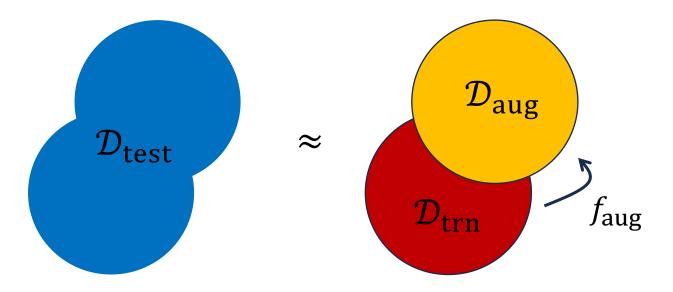
- Idea 1: Let's measure the alignment between f_{aug} and f_{gen} .
 - Then, we will select the detector with the best alignment.
 - We know from the preliminary work that alignment \approx accuracy.

Normal data

fgen

Motivation 2

- Idea 2: Let's utilize the assumption of transductive learning:
 - We are given unlabeled test data \mathcal{D}_{test} at training.
 - Suppose that f_{aug} and f_{gen} are aligned well.
 - Then, $\mathcal{D}_{\text{test}} = \mathcal{D}_{\text{test}}^n \cup \mathcal{D}_{\text{test}}^a$ should be similar to $\mathcal{D}_{\text{trn}} \cup \mathcal{D}_{\text{aug}}$.



Main Approach

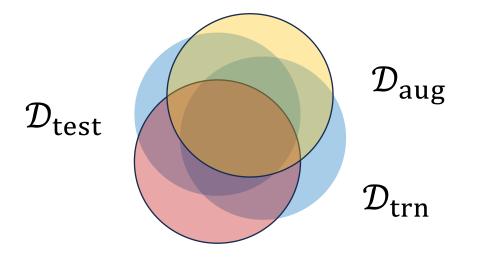
• Approach: Let's approximate the alignment with $\tilde{\mathcal{L}}$:

$$\tilde{\mathcal{L}}(\alpha) = d(\mathcal{Z}_{trn} \cup \mathcal{Z}_{aug}, \mathcal{Z}_{test})$$

- α is a set of hyperparameters (HPs) which we want to evaluate.
- $d(\cdot, \cdot)$ is a distance function between sets.
- \mathcal{Z} refers to the set of embeddings created with hyperparameters α .
- Smaller $\tilde{\mathcal{L}}(\alpha)$ represents that α makes better alignment.

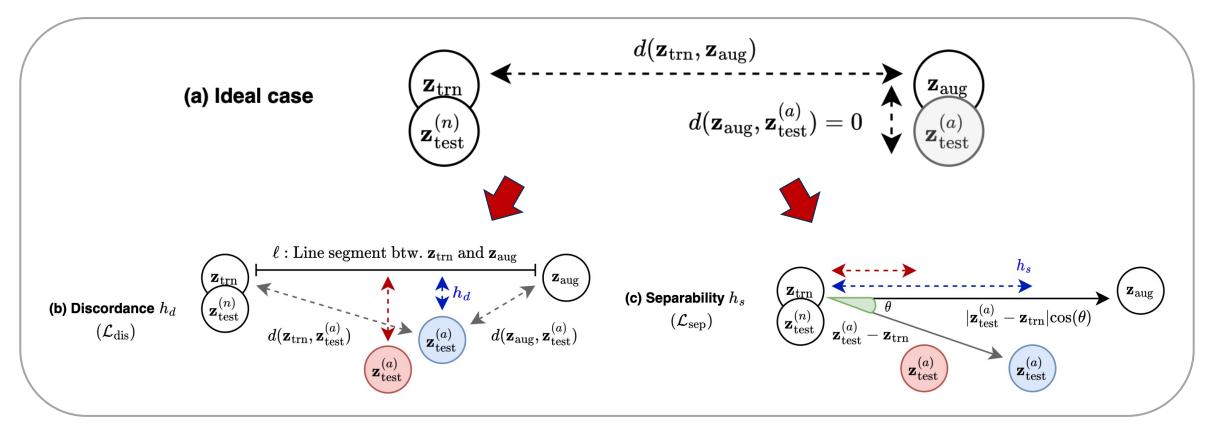
Important Limitation

- The problem is that there can be **false positives**:
 - If f_{aug} and f_{gen} are aligned well, then $\tilde{\mathcal{L}}$ should be small.
 - If $\tilde{\mathcal{L}}$ is small, then f_{aug} and f_{gen} are not necessarily aligned.
- One example is when everything is mixed around.



Final Approach

• We study how to make $\tilde{\mathcal{L}}$ more accurate by avoiding false positives.



Experiments

- Average AUC and rank across 21 different tasks in 2 datasets.
- Our DSV outperforms all competitors in 6 of the 8 cases.

	$f_{ m aug}$	Avg.	Rand.	Base	MMD	STD	MC	SEL	HITS	DSV
AUC:	CutOut	0.739	0.776	0.741	0.735	0.739	0.749	0.727	0.757	0.813
	CutAvg	0.739	0.817	0.721	0.692	0.745	0.751	0.744	0.742	<u>0.806</u>
	$\operatorname{CutDiff}$	0.743	0.711	0.739	0.730	0.744	0.747	0.741	0.777	0.811
	CutPaste	0.788	0.841	0.694	0.756	0.818	0.862	0.830	0.850	0.884
	$f_{ m aug}$	Avg.	Rand.	Base	MMD	STD	MC	SEL	HITS	DSV
	$f_{ m aug} \over { m CutOut}$	Avg. 7.33	Rand. 6.10	Base 6.62	MMD 6.93	STD 6.29	MC 6.50	SEL 7.10	HITS <u>5.43</u>	DSV 3.79
Rank:		-					1			
Rank:	CutOut	7.33	6.10	6.62	6.93	6.29	6.50	7.10	5.43	3.79

Outline

- 1. Introduction
- 2. Preliminaries: Benchmark Study
- 3. Approach 1: Offline Selection

4. Approach 2: End-to-end Learning

5. Conclusion

Research Question

- DSV has a limitation as an offline evaluation measure.
 - We need to train all possible N models before doing selection.
- **Q:** How can we design a framework for end-to-end learning?

• What we need:

- 1. Differentiable validation loss that measures the alignment.
- 2. Differentiable augmentation functions.
- 3. Implementation techniques that make everything possible.

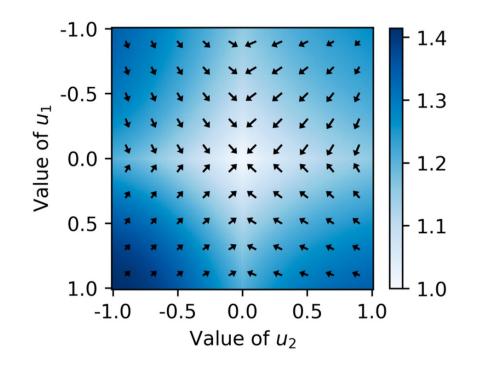
New Validation Loss

- DSV sub-optimal with respect to end-to-end optimization.
 - What we need is not just differentiability.
 - The loss function should be smooth and able to lead to local optima.
- We design a much simpler loss:

$$\mathcal{L}_{\text{val}}(\mathcal{Z}_{\text{trn}}, \mathcal{Z}_{\text{aug}}, \mathcal{Z}_{\text{test}}) = \frac{1}{2} \sum_{\mathbf{z}' \in \mathcal{Z}'_{\text{test}}} \|\mathbf{z}' - \text{mean}(\mathcal{Z}'_{\text{trn}})\|_2 + \|\mathbf{z}' - \text{mean}(\mathcal{Z}'_{\text{aug}})\|_2 ,$$

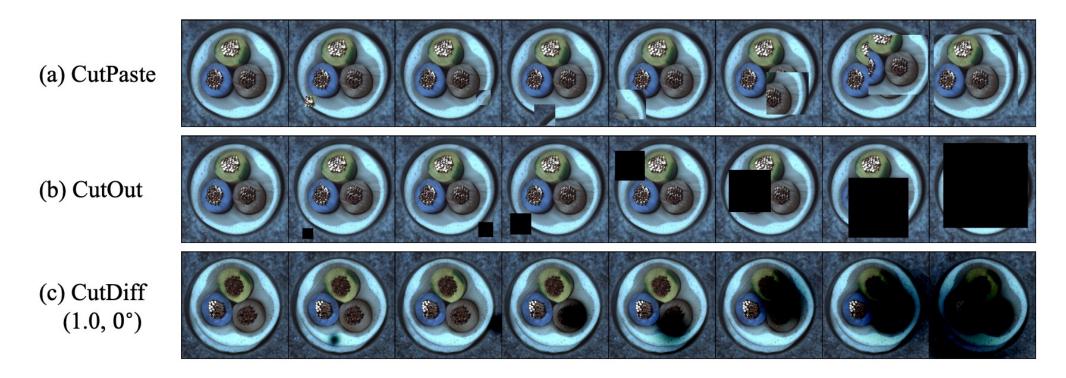
Nice Property of the Validation Loss

- The (negative) gradients nicely point to a local optimum.
 - u_1 and u_2 are parameters in this example that determine the alignment.

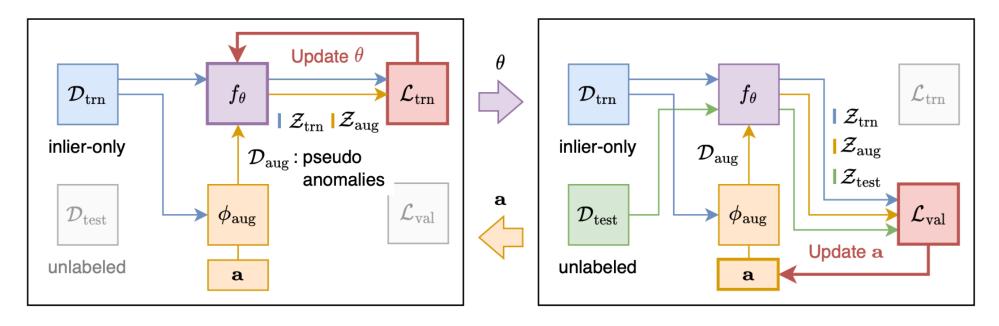


Differentiable Augmentation

• We propose CutDiff, a new differentiable variant of CutOut.



- Our framework aims to solve bilevel optimization for θ and \mathbf{a} .
 - θ is the set of parameters for a detector f_{θ} .
 - **a** is the set of (hyper)parameters for f_{aug} .



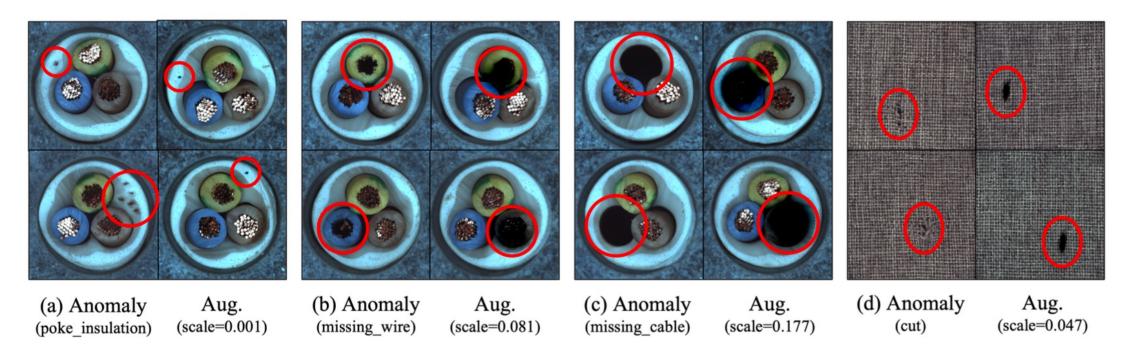
Quantitative Experiments

• ST-SSAD generally outperforms the baselines, but not in all cases.

Main Result										Ablation Study			
Object	Anomaly Type	AE	D-SVDD	RS-CO	RD-CO	RS-CP	RD-CP	RS-CD	RD-CD	ST-SSAD	MMD1	MMD2	FO
Cable	Bent wire	0.515	0.432	0.556	0.560	0.703	0.756	0.527	0.580	0.490	0.581	0.643	0.579
Cable	Cable swap	0.639	0.295	0.483	0.625	0.618	0.683	0.574	0.696	0.532	0.510	0.562	0.545
Cable	Combined	0.584	0.587	0.879	0.857	0.880	0.949	0.901	0.879	0.925	0.939	0.962	0.882
Cable	Cut inner insulation	0.758	0.591	0.630	0.737	0.766	0.833	0.623	0.732	0.667	0.633	0.649	0.689
Cable	Cut outer insulation	0.989	0.343	0.695	0.815	0.787	0.871	0.703	0.790	0.516	0.428	0.461	0.527
Cable	Missing cable	0.920	0.466	0.953	0.961	0.755	0.801	0.935	0.945	0.998	0.855	0.772	0.999
Cable	Missing wire	0.433	0.494	0.781	0.655	0.501	0.546	0.708	0.620	0.863	0.547	0.477	0.699
Cable	Poke insulation	0.287	0.471	0.469	0.527	0.645	0.672	0.489	0.503	0.630	0.692	0.816	0.676
Carpet	Color	0.578	0.716	0.669	0.508	0.412	0.287	0.643	0.639	0.938	0.761	0.741	0.918
Carpet	Cut	0.198	0.758	0.439	0.608	0.403	0.411	0.490	0.767	0.790	0.353	0.401	0.595
Carpet	Hole	0.626	0.676	0.379	0.613	0.404	0.389	0.470	0.765	0.590	0.438	0.229	0.630
Carpet	Metal contamination	0.056	0.739	0.198	0.304	0.240	0.167	0.255	0.474	0.076	0.392	0.134	0.392
Carpet	Thread	0.394	0.742	0.494	0.585	0.469	0.517	0.508	0.679	0.483	0.492	0.541	0.642
Grid	Bent	0.849	0.168	0.456	0.322	0.421	0.433	0.337	0.354	0.771	0.780	0.650	0.602
Grid	Broken	0.806	0.183	0.397	0.312	0.487	0.502	0.340	0.392	0.869	0.845	0.887	0.884
Grid	Glue	0.704	0.143	0.634	0.568	0.674	0.732	0.681	0.578	0.906	0.966	0.974	0.721
Grid	Metal contamination	0.851	0.229	0.421	0.380	0.499	0.514	0.425	0.613	0.858	0.861	0.665	0.732
Grid	Thread	0.583	0.209	0.612	0.494	0.500	0.549	0.654	0.611	0.973	0.962	0.969	0.964
Tile	Crack	0.770	0.728	0.872	0.993	0.743	0.636	0.837	0.999	0.749	0.740	0.820	0.595
Tile	Glue strip	0.697	0.509	0.693	0.836	0.665	0.700	0.675	0.831	0.767	0.585	0.649	0.561
Tile	Gray stroke	0.637	0.785	0.845	0.642	0.583	0.657	0.856	0.802	0.974	0.653	0.706	0.973
Tile	Oil	0.414	0.690	0.708	0.745	0.464	0.576	0.683	0.837	0.554	0.548	0.614	0.555
Tile	Rough	0.724	0.387	0.606	0.725	0.631	0.661	0.568	0.657	0.690	0.700	0.549	0.605
<i>p</i> -value		.0000	.0000	.0000	.0012	.0000	.0000	.0000	.0728	Ours	.0268	.0073	.1332

Qualitative Experiments

• ST-SSAD learns the patch size and ratio in an end-to-end way:

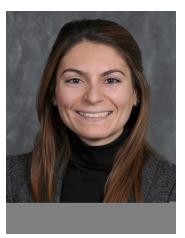


Outline

- 1. Introduction
- 2. Preliminaries: Benchmark Study
- 3. Approach 1: Offline Selection
- 4. Approach 2: End-to-end Learning
- 5. <u>Conclusion</u>

Conclusion

- Hyperparameter tuning is an essential problem in SSAD.
- However, the problem is largely underexplored.
 - I hope more people to get interested in the topic and participate.
- We have proposed an **offline** and an **end-to-end** method.



Prof. Leman Akoglu (CMU)

Lingxiao Zhao (CMU) Jaemin Yoo (KAIST)

Prof. Yue Zhao (USC)

References

- [1] <u>J. Yoo</u>, T. Zhao, and L. Akoglu. "Data Augmentation is a Hyperparameter: Cherry-picked Self-Supervision for Unsupervised Anomaly Detection is Creating the Illusion of Success." **Transactions on Machine Learning Research (2023)**
- [2] <u>J. Yoo</u>, Y. Zhao, L. Zhao, and L. Akoglu. "DSV: An Alignment Validation Loss for Self-supervised Outlier Model Selection." **ECML PKDD 2023**
- [3] <u>J. Yoo</u>, L. Zhao, and L. Akoglu. "End-to-End Augmentation Hyperparameter Tuning for Self-Supervised Anomaly Detection." **arXiv (2023)**
- [4] L. Akoglu and <u>J. Yoo</u>. "Self-Supervision for Tackling Unsupervised Anomaly Detection: Pitfalls and Opportunities." **BigData 2023**

Appendix

Jaemin Yoo

School of Electrical Engineering

Self-supervised Learning in General

- Self-supervised learning (SSL) is a general technique
 - 1. Pre-training:
 - Given a large set of unlabeled data
 - Create pseudo labels for training a model in a supervised way
 - 2. Fine-tuning:
 - Update the model for a downstream task with a few labels
- Example: Large language models (GPT, BERT, etc.)

I have *eaten* an apple and a banana.

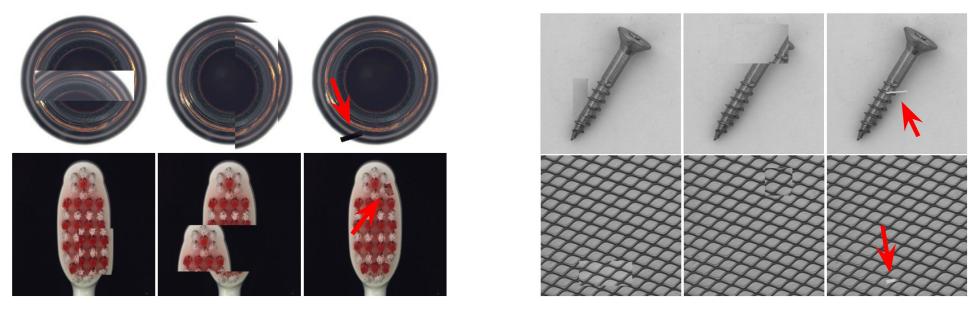
SSAD vs. SSL in Supervised Learning

• SSL is generally used with fine-tuning

- SSL may not be perfectly aligned with the downstream task
- SSL on AD is used without fine-tuning
 - SSL task solely determines the performance of AD
 - SSL task should be aligned well with the downstream task
- Implication: The choice of f_{aug} is very important SSAD

SSAD: Example

- CutPaste (Li et al., 2021) is an example of f_{aug}
 - Cuts a random patch from an image and pastes into a different location
 - Generated images look like (local) defects in industrial object images



Li et al. "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization." CVPR 2021

Jaemin Yoo (KAIST)