

DSV: An Alignment Validation Loss for Self-supervised Outlier Model Selection

Jaemin Yoo¹

Yue Zhao²

Lingxiao Zhao³

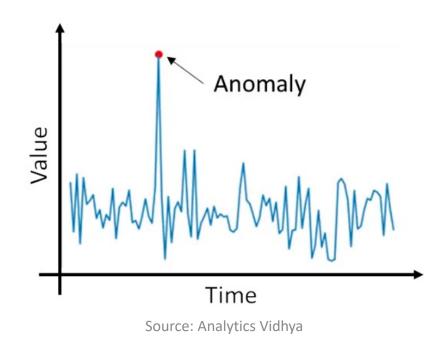
Leman Akoglu³

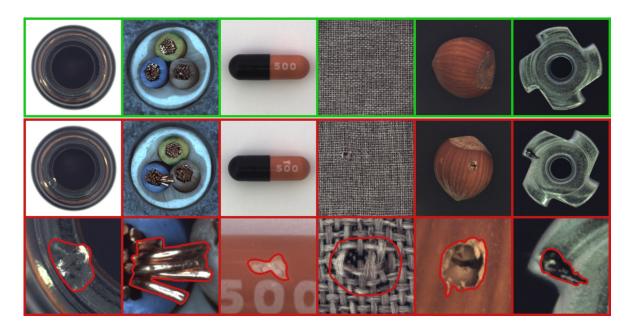
Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Anomaly Detection

- Anomaly detection (AD) is to find anomalies from a set of data
 - Unsupervised: No information about actual anomalies





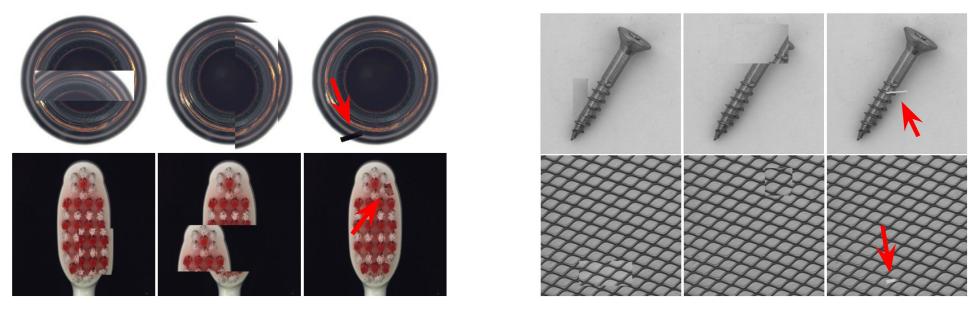
Source: https://www.mvtec.com/company/research/datasets/mvtec-ad

Self-supervised Anomaly Detection

- **Q:** How can we training an accurate detector without labels?
- Self-supervised anomaly detection (SSAD) is a promising direction
 - Idea: Generate pseudo anomalies with an augmentation function f_{aug}
- How SSAD works:
 - Create \mathcal{D}_{aug} by applying f_{aug} to normal data \mathcal{D}_{trn}
 - Train a supervised classifier ϕ to classify between \mathcal{D}_{trn} and \mathcal{D}_{aug}

SSAD: Example

- CutPaste (Li et al., 2021) is an example of f_{aug}
 - Cuts a random patch from an image and pastes into a different location
 - Generated images look like (local) defects in industrial object images



Li et al. "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization." CVPR 2021

Jaemin Yoo (KAIST)

Unsupervised Outlier Model Selection

- For anomaly detection, model selection is a crucial problem
- Why? No validation (or hold-out) data are given at training
- For SSAD, hyperparameters of f_{aug} are especially important
 - Since they determine the success and the failure of training

Q: How can we effectively perform augmentation HP search on SSAD?

Problem Definition

• Given

- Data augmentation function f_{aug} (e.g., CutOut or CutPaste)
- Normal-only training data \mathcal{D}_{trn}
- Unlabeled test data \mathcal{D}_{test} containing both normal data and anomalies
- Set $\{\phi_i\}_i$ of detector models trained by f_{aug} with different HPs
- Goal: Find the detector ϕ^* showing the highest accuracy on $\mathcal{D}_{ ext{test}}$
- Without having any labels at the training time

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

DSV: Overview

• We propose DSV (Discordance and Separability Validation)

- Unsupervised validation loss for HP search on SSAD
- Measures the quality of f_{aug} without requiring any labels
- DSV consists of three main ideas:
 - Main Idea 1: Alignment as an embedding distance
 - Main Idea 2: Decomposition of the alignment
 - Main Idea 3: Surrogate losses without labeled data

Anomaly-Generating Function

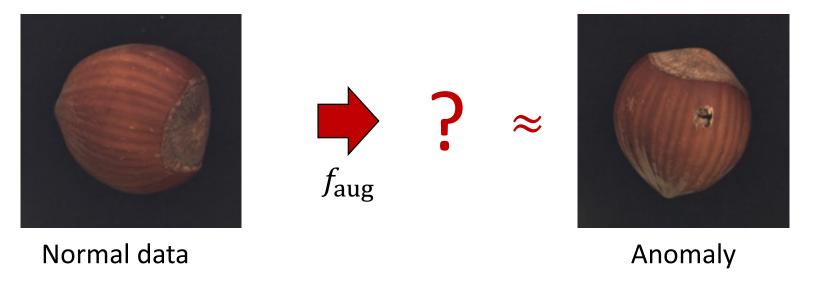
- Let $f_{\rm gen}$ be the anomaly-generating function underlying in $\mathcal{D}_{\rm test}$
 - Transforms a normal sample **x** into an anomaly $f_{\text{gen}}(\mathbf{x})$
 - Hard to formally define in real data

Anomaly

fgen

DSV: Goal

- Goal: Find HPs that make f_{aug} aligned with f_{gen} the most
- Why? Detector ϕ is trained to classify between x and $f_{aug}(x)$
 - If f_{aug} and f_{gen} are similar, ϕ can detect $f_{gen}(x)$ as well



Main Idea 1

- **Q:** How can we measure the alignment between f_{aug} and f_{gen} ?
- Idea 1: Measure the distance between embeddings generated by ϕ

$$\mathcal{L}_{ali} = d\left(\mathcal{Z}_{aug}, \mathcal{Z}_{test}^{(a)}\right)$$

- *d*: Distance function between sets of vectors
- + \mathcal{Z}_{aug} : Set of embeddings for augmented training data
- $\mathcal{Z}_{test}^{(a)}$: Set of embeddings for test anomalies

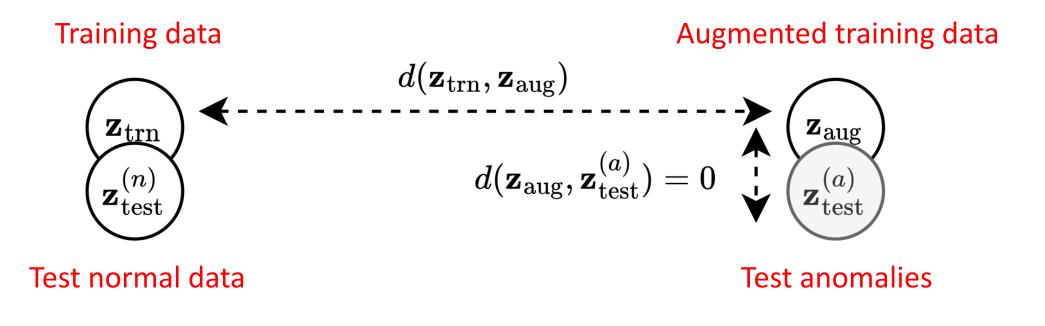
Main Ideas 2 & 3

$$\mathcal{L}_{ali} = d\left(\mathcal{Z}_{aug}, \mathcal{Z}_{test}^{(a)}\right)$$

- **Q**: How can we approximate \mathcal{L}_{ali} without accessing $\mathcal{Z}_{test}^{(a)}$?
- Idea 2: Decompose it into discordance and separability
 - They consider two different aspects of the alignment
- Idea 3: Design surrogate losses to estimate the two terms
 - Design surrogate losses to avoid using any labeled data

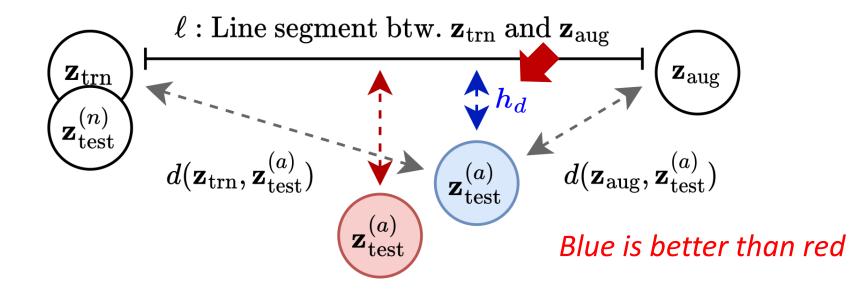
Main Idea 2: Visualization

- Assumption: All sets are of size one, e.g., $Z_{trn} = \{z_{trn}\}$
- We illustrate the case of perfect alignment as follows:



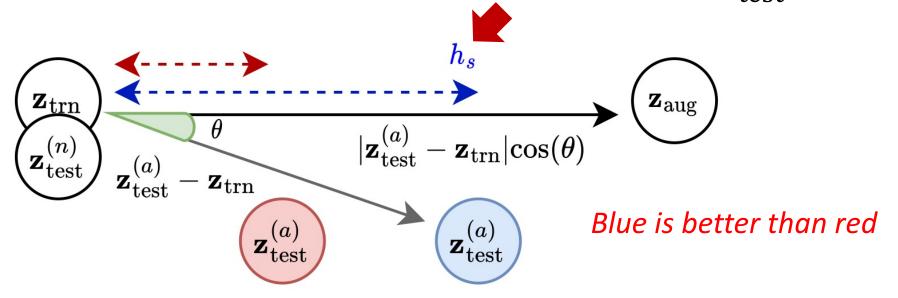
Main Idea 2: Discordance

- Let ℓ be the line segment between $\mathcal{Z}_{\mathrm{trn}}$ and $\mathcal{Z}_{\mathrm{aug}}$
- **Discordance** h_d measures the distance between $\mathcal{Z}_{test}^{(a)}$ and ℓ



Main Idea 2: Separability

- Let ℓ be the line segment between Z_{trn} and Z_{aug}
- Separability h_s measures the distance between \mathcal{Z}_{trn} and $\mathcal{Z}_{test}^{(a)}$ on ℓ



Main Idea 2: Summary

- Observation: $\mathcal{L}_{ali} = d\left(Z_{aug}, Z_{test}^{(a)}\right)$ is minimized if and only if
 - The discordance h_d is zero
 - The separability h_s is one
- Problem now is to minimize h_d and to maximize h_s up to one
 - Benefit: Easier to design surrogate losses for h_d and h_s than for \mathcal{L}_{ali}

Main Idea 3

- Question: How can we design label-free surrogate losses?
- Approach:

Use
$$Z_{\text{test}} = Z_{\text{test}}^{(n)} \cup Z_{\text{test}}^{(a)}$$
 instead of each $Z_{\text{test}}^{(n)}$ or $Z_{\text{test}}^{(a)}$

Main Idea 3: Theoretical Analysis

• We show theoretically that

 \mathcal{L}_{dis} and \mathcal{L}_{sep} are **good approximations** of h_d and h_s , respectively

$$\begin{split} \mathcal{L}_{\mathrm{dis}} \colon c_2 h_d + c_2 + c_3 &\leq \mathcal{L}_{\mathrm{dis}}(\cdot) \leq c_2 h_d + c_2 + c_3 + \frac{(c_1 + c_3)(\sigma + \epsilon)}{d(\mathcal{Z}_{\mathrm{trn}}, \mathcal{Z}_{\mathrm{aug}})}, \\ \mathcal{L}_{\mathrm{sep}} \colon \mathcal{L}_{\mathrm{sep}}(\mathcal{Z}_{\mathrm{trn}}, \mathcal{Z}_{\mathrm{aug}}, \mathcal{Z}_{\mathrm{test}}) &= \sqrt{\gamma(1 - \gamma)} h_s + \frac{\sqrt{\gamma} \bar{\sigma}_{\mathrm{test}}}{\|\mathbf{z}_{\mathrm{aug}} - \mathbf{z}_{\mathrm{trn}}\|}. \end{split}$$

DSV: Summary

- Our DSV loss \mathcal{L}_{DSV} is the combination of \mathcal{L}_{dis} and \mathcal{L}_{sep}
 - Idea is to minimize \mathcal{L}_{dis} while maximizing \mathcal{L}_{sep} to some extent

$$\mathcal{L}_{\mathrm{DSV}}(\mathcal{Z}_{\mathrm{trn}}, \mathcal{Z}_{\mathrm{aug}}, \mathcal{Z}_{\mathrm{test}}) = \mathcal{L}_{\mathrm{dis}}(\cdot) - \frac{\max(\mathcal{L}_{\mathrm{sep}}(\cdot), 1/2)}{\mathcal{L}_{\mathrm{dis}}(\cdot)},$$

• We search for ϕ^* that shows the smallest \mathcal{L}_{DSV} :

$$\phi^* = \operatorname{argmin}_{\phi \in \Phi} \mathcal{L}_{\text{DSV}}(\phi; \mathcal{D}_{\text{trn}}, \mathcal{D}_{\text{test}}, f_{\text{aug}})$$

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Experimental Questions

• Q1: Performance

• How good are the models selected by DSV?

• Q2: Ablation study

• Are both the *discordance* and *separability* meaningful?

• Q3: Case studies (and visualization)

• How well does DSV work on individual AD tasks?

Experimental Settings

- Datasets: MVTec AD and MPDD for image AD
 - 21 different tasks in total
- Detector model: ResNet18-based classifier
- Augmentation functions: CutOut, CutAvg, CutDiff, and CutPaste
 - CutAvg and CutDiff are variants of CutOut
- Target hyperparameters: Patch size in f_{aug}

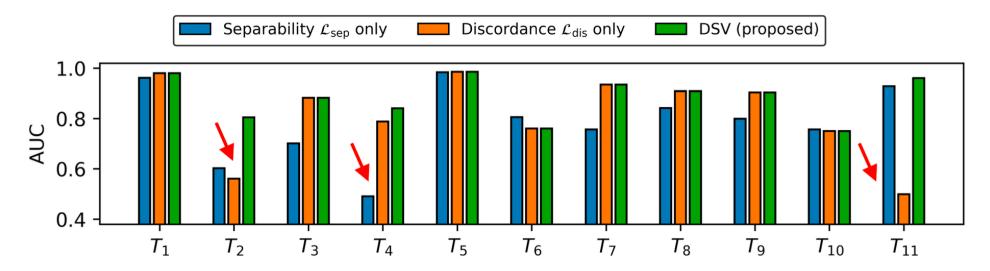
Q1. Performance

- Average AUC and rank across 21 different tasks in the two datasets
- Our DSV outperforms all competitors in 6 of the 8 cases

	$f_{ m aug}$	Avg.	Rand.	Base	MMD	STD	MC	SEL	HITS	DSV
AUC:	CutOut	0.739	0.776	0.741	0.735	0.739	0.749	0.727	0.757	0.813
	CutAvg	0.739	0.817	0.721	0.692	0.745	0.751	0.744	0.742	0.806
	$\operatorname{CutDiff}$	0.743	0.711	0.739	0.730	0.744	0.747	0.741	0.777	0.811
	CutPaste	0.788	0.841	0.694	0.756	0.818	0.862	0.830	0.850	0.884
	$f_{ m aug}$	Avg.	Rand.	Base	MMD	STD	MC	SEL	HITS	DSV
	$f_{ m aug}$ CutOut	Avg. 7.33	Rand. 6.10	Base 6.62	MMD 6.93	STD 6.29	MC 6.50	SEL 7.10	HITS <u>5.43</u>	DSV 3.79
Rank:				1			1			
Rank:	CutOut	7.33	6.10	6.62	6.93	6.29	6.50	7.10	5.43	3.79

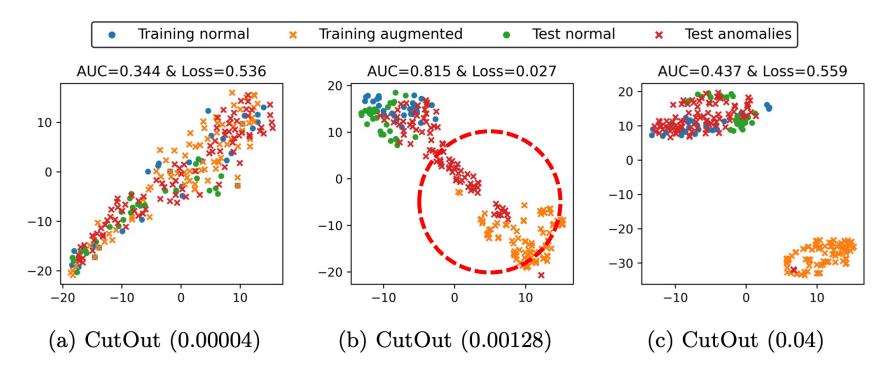
Q2. Ablation Study

- Comparison between \mathcal{L}_{dis} , \mathcal{L}_{sep} , and \mathcal{L}_{DSV} when $f_{aug} = CutPaste$
- DSV shows a dramatic improvement in a few cases
 - E.g., tasks T_2 (both fail), T_4 (L_{sep} fails), T_{11} and T_{14} (\mathcal{L}_{dis} fails)



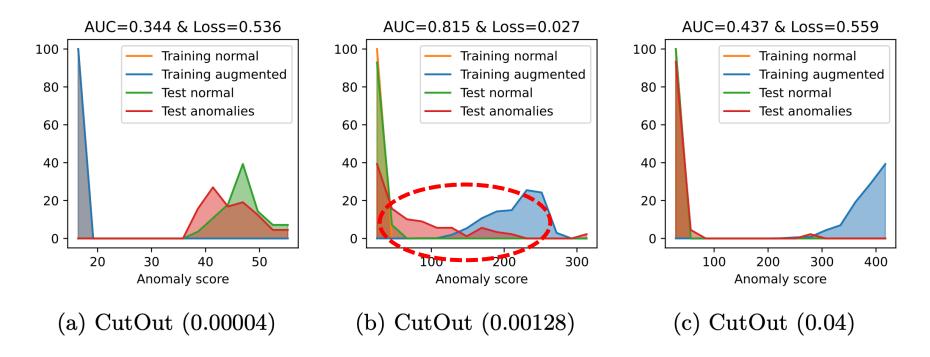
Q3. Case Studies (1)

- Embedding distributions with different patch sizes on CutOut
- In (b), augmented data and test anomalies are best aligned with DSV



Q3. Case Studies (2)

- Anomaly score distributions with different patch sizes on CutOut
- In (b), augmented data and test anomalies are best aligned with DSV



Outline

- Introduction
- Proposed Method
- Experiments
- <u>Conclusion</u>

Conclusion

- We propose DSV, a validation loss for model selection on SSAD
- DSV consists of three main ideas:
 - Main Idea 1: Define alignment as the embedding distance
 - Main Idea 2: Decompose the alignment into discordance and separability
 - Main Idea 3: Design surrogate losses, which do not require labels
- DSV outperforms the baselines for unsupervised model selection
- Paper and code: https://github.com/jaeminyoo/DSV