

Model-Agnostic Augmentation for Accurate Graph Classification

Jaemin Yoo*, Sooyeon Shim, and U Kang

Seoul National University

* Currently in Carnegie Mellon University

TheWebConf 2022

Outline

- Introduction
- Proposed Methods
- Experiments
- Conclusion

- Graph data are common in real-world tasks
 - Social network represents friendships of people
 - Review graph represents user preferences
 - Chemical compound consists of many elements

https://www.shortstack.com/blog/best-social-networks-to-reach-specific-demographics/

Jaemin Yoo (CMU)

Graph Classification

- **Given** a set $\{G_i, y_i\}_i$ of graphs and labels
 - Each graph has a node attribute matrix X
- Learn a graph classifier *f*
- Predict the labels of unseen test graphs
- Real-world applications:
 - Predicting the toxicity of a chemical compound
 - Predicting the property of a social group

Data Augmentation

- Data augmentation (DA) is essential for ML
 - · Increases the coverage of training data
 - Improves the generalizability of estimators
- An example of DA in the image domain:

A Simple Framework for Contrastive Learning of Visual Representations (ICML 2020)

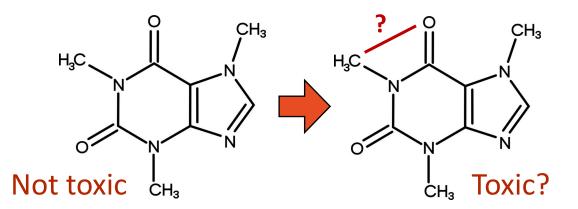
Jaemin Yoo (SNU)

Graph Augmentation

- DA can also be done for graph classification
 - Recall that images are grid-structured graphs
- Consider an undirected graph $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$
 - $\ensuremath{\mathcal{V}}$ is the set of nodes
 - \mathcal{E} is the set of edges
 - **X** is the node feature matrix of size $|\mathcal{V}| \times d$
- Any of \mathcal{V} , \mathcal{E} , and **X** can be the target of DA

Difficulties of Graph DA

- DA should preserve semantic information
 - In images, this can be easily verified visually
 - In graphs, even the change of a single edge can change the fundamental semantic information
- Let's consider a molecular graph:



Desired Properties (1)

- We have contradictory goals for effective DA
 - Goal 1. To make sufficient changes of a graph
 - Goal 2. To preserve semantic information
- We thus propose five **desired properties**
 - **Property 1.** Changes in $|\mathcal{E}|$ should be unbiased
 - Property 2. Connectivity should be preserved
 - Property 3. Node features should change
 - **Property 4.** The number of edges should change
 - Property 5. It should be done in linear time

Desired Properties (2)

- We have contradictory goals for effective DA
 - Goal 1. To make sufficient changes of a graph
 - Goal 2. To preserve semantic information
- We thus propose five desired properties
 - **Property 1.** Changes in $|\mathcal{E}|$ should be unbiased
 - Property 2. Connectivity should be preserved
 - Property 3. Node features should change
 - Property 4. The number of edges should change
 - Property 5. It should be done in linear time

Research Overview

- We propose two algorithms for effective DA
 - Our approaches satisfy all desired properties
 - They show the best performance in 9 datasets

Method	P1	P2	P3	P4	P5
DropEdge [28]				\checkmark	\checkmark
GraphCrop [35]			\checkmark	\checkmark	\checkmark
NodeAug [38]			\checkmark	\checkmark	\checkmark
MotifSwap [55]	\checkmark	\checkmark			
NodeSam (proposed)		\checkmark	\checkmark	\checkmark	\checkmark
SubMix (proposed)	✓	\checkmark	\checkmark	\checkmark	\checkmark

Outline

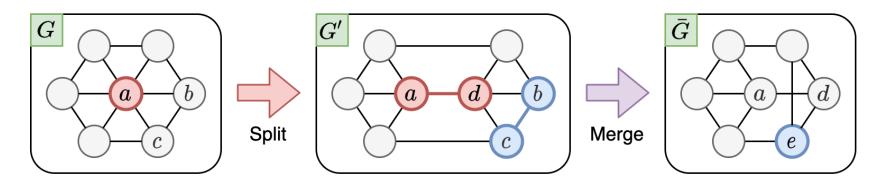
- Introduction
- Proposed Methods
- Experiments
- Conclusion

Proposed Methods

- We propose two algorithms for graph DA
 - They work in a model-agnostic way
 - Based on different motivations and ideas
- NodeSam (Node Split & Merge)
 - Makes balanced and stable changes
- **SubMix** (Subgraph Mix)
 - Makes a high degree of structural changes

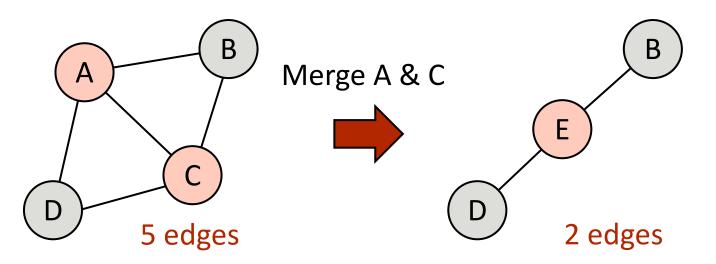
NodeSam: Overview

- Goal: To make balanced and stable changes
- Main idea is to conduct opposite operations
 - To **split** a random node into a pair of nodes
 - To merge a random pair of connected nodes
- This does not arbitrarily change connectivity



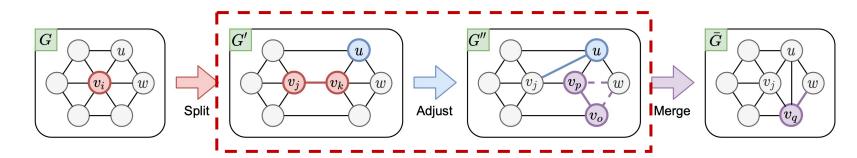
NodeSam: Limitation

- The basic version can decrease # of edges
 - Split always creates a single edge
 - Merge can remove **more than one** edge
- This violates our Property 1 for unbiasedness



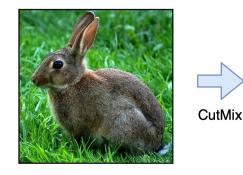
NodeSam: Adjustment

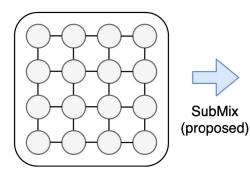
- We propose an adjustment operation
 - Step 1. Compute h_i , which is the expected number of edges that will be removed by Merge
 - **Step 2.** Insert h_i edges around the target node
- We also propose an optimization technique
 - Compute an estimation of h_i in linear time

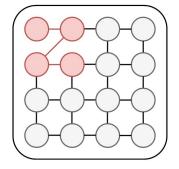


SubMix: Overview

- Goal: To augment a graph in a subgraph level
 - Recall that NodeSam is a node-level algorithm
- SubMix generalizes
 CutMix into graphs
 - CutMix is a popular algorithm in images
 - The red subgraph is from another graph

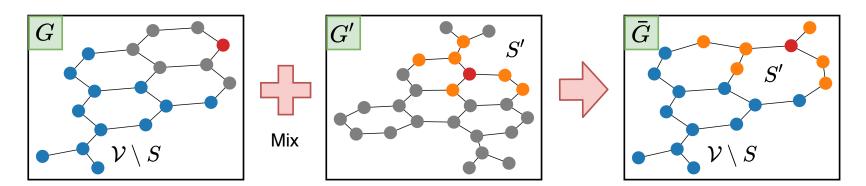






SubMix: Random Walks

- How SubMix works given a set *G* of graphs:
 - Take two random graphs G and G' from G
 - Select subgraphs *S* and *S'* by **random walks**
 - Each of S and S' is guaranteed to be connected
 - Replace S in G with S' from G', making \overline{G}



SubMix: Mixing Labels

- SubMix can select graphs with different labels
 - For example, G is toxic, while G' is not toxic
- The resulting (soft) label \bar{y} is computed as

$$\overline{\mathbf{y}} = q\mathbf{y} + (1-q)\mathbf{y}'$$

- y and y' are one-hot labels of G and G', resp.
- q is the ratio of edges of G included in the new \overline{G}

Outline

- Introduction
- Proposed Methods
- Experiments
- Conclusion

Datasets

- We use 9 datasets for graph classification
 - 7 molecular graphs and 2 large social networks
 - Each dataset consists of 344 to 144,033 graphs

Dataset	Graphs	Nodes	Edges	Features	Labels
$D\&D^1$	1,178	334,925	843,046	89	2
ENZYMES ¹	600	19,580	37,282	3	6
MUTAG ¹	188	3,371	3,721	7	2
NCI1 ¹	4,110	122,747	132,753	37	2
NCI109 ¹	4,127	122,494	132,604	38	2
PROTEINS ¹	1,113	43,471	81,044	3	2
PTC-MR ¹	344	4,915	5,054	18	2
COLLAB ¹	5,000	372,474	12,286,079	369	3
Twitter ¹	144,033	580,768	717,558	1,323	2

Experimental Setup

- We use GIN [ICLR'19] as a graph classifier
- We include the following baselines:
 - **DropEdge** removes an edge uniformly at random
 - **DropNode** removes a node uniformly at random
 - GraphCrop crops and returns a random subgraph
 - MotifSwap changes of an open triangle

. . .

Classification Accuracy

Q1. Do NS&SM outperform the baselines?

A. They show the best performance in general

- NodeSam makes the highest avg. accuracy
- SubMix achieves the best average rank

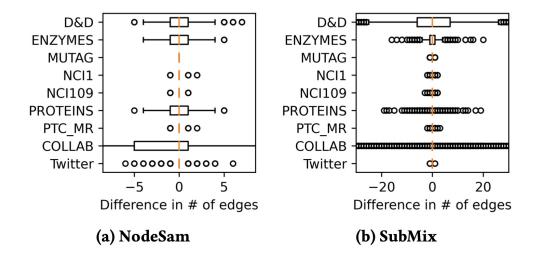
Method	D&D	ENZY.	MUTAG	NCI1	N109	PROT.	PTC-MR	COLLAB	Twitter	Average	Rank
Baseline	76.40 (4)	50.33 (10)	89.94 (4)	82.68 (9)	81.80 (9)	75.38 (9)	63.94 (7)	82.66 (7)	66.05 (7)	74.35 (8)	7.33 ± 2.18
GraphCrop	77.08 (2)	51.00 (9)	77.11 (10)	80.46 (10)	79.77 (10)	75.20 (10)	61.87 (10)	83.50 (2)	66.15 (3)	72.46 (10)	7.33 ± 3.77
DropEdge	76.14 (6)	53.67 (6)	81.93 (9)	82.82 (7)	82.60 (7)	75.74 (4)	63.68 (8)	82.50 (9)	66.05 (8)	73.90 (9)	7.11 ± 1.62
NodeAug	76.14 (8)	54.67 (5)	86.14 (7)	83.16 (4)	82.36 (8)	75.56 (6)	66.24 (2)	81.32 (10)	65.98 (9)	74.62 (7)	6.56 ± 2.55
AddEdge	76.14 (7)	55.17 (3)	85.67 (8)	83.99 (2)	83.06 (5)	75.38 (8)	64.27 (5)	82.80 (5)	66.10 (6)	74.73 (6)	5.44 ± 2.07
ChangeAttr	75.72 (9)	53.33 (8)	90.44 (3)	83.02 (5)	83.57 (2)	75.47 (7)	62.47 (9)	82.76 (6)	66.36 (2)	74.79 (5)	5.67 ± 2.83
DropNode	75.55 (10)	55.17 (3)	87.28 (6)	82.85 (6)	83.04 (6)	75.65 (5)	66.59 (1)	82.54 (8)	66.11 (5)	74.97 (4)	5.56 ± 2.60
MotifSwap	76.23 (5)	53.50 (7)	90.47 (2)	82.82 (7)	83.28 (4)	75.92 (3)	65.79 (3)	82.84 (3)	65.93 (10)	75.20 (3)	4.89 ± 2.62
SubMix	78.10 (1)	57.50 (2)	89.94 (4)	84.33 (1)	84.37 (1)	76.19 (1)	63.97 (6)	83.74 (1)	66.44 (1)	76.06 (2)	2.00 ± 1.80
NodeSam	76.57 (3)	60.00 (1)	90.96 (1)	83.33 (3)	83.52 (3)	76.10 (2)	65.48 (4)	82.82 (4)	66.13 (4)	76.10 (1)	2.78 ± 1.20

Changes of Graph Size

Q2. How do NS&SM change the graph size?

A. They make sufficient and unbiased changes

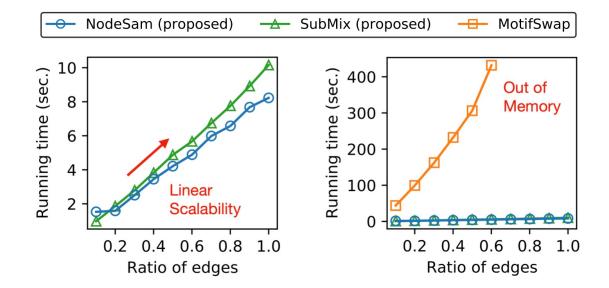
- We measure the graph size by # of edges
- The variance of changes is larger with SubMix



Scalability

Q3. How scalable are NS&SM to large graphs?A. They show linear scalability with # of edges

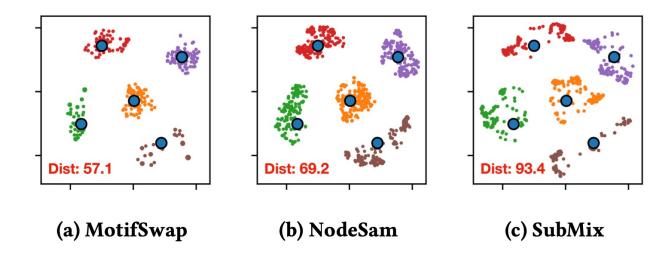
• MotifSwap, the best competitor, causes OOM



Visualization

Q4. How are augmented graphs distributed?A. We visualize the space of augmentation

- MotifSwap makes the smallest changes
- SubMix makes the largest changes as we expect



Outline

- Introduction
- Proposed Methods
- Experiments
- <u>Conclusion</u>

Conclusion

• We propose **NodeSam** and **SubMix**

- Augmentation algorithms for graph classification
- Can be used with any type of graph classifiers

Contributions

- First comprehensive work for model-agnostic DA
- They satisfy five desired properties for graph DA
- They show the best performance in 9 datasets

Thank you!

Jaemin Yoo (jaeminyoo@cmu.edu)

https://github.com/snudatalab/GraphAug