

International Conference on Data Mining

Transition Matrix Representation of Trees with Transposed Convolutions

Jaemin Yoo^{1*} and Lee Sael²

¹ Seoul National University

² Ajou University

* Currently in Carnegie Mellon University

SDM 2022

Outline

- Introduction
- Proposed Method
- Further Analysis
- Experiments
- Conclusion

Tree Models

- Tree models have been used for various tasks
- They make **hierarchical** decisions, which split given examples into leaf nodes

https://regenerativetoday.com/simple-explanation-on-how-decision-tree-algorithm-makes-decisions/

Why Tree Models?

- Tree models make interpretable decisions
 - A decision path reflects the characteristic of x
 - Similar examples go to the same leaf node

https://commons.wikimedia.org/wiki/File:Simple_decision_tree.svg

Jaemin Yoo (SNU)

Components of Trees

- Tree models consist of three components:
 - **Decision function** f_i at each internal node *i*
 - How to pass x to the next layer
 - Classifier function g_l at each leaf node l
 - How to make the final prediction
 - Tree shape
 - How given examples are clustered
- There are various types of tree models
 - Decision trees, soft decision trees, and so on

Decision Trees

Decision trees (DT)

- The simplest and most popular tree models
- Each function f_i of DTs works as follows:
 - 1. Pick a feature index k
 - 2. Learn the best value *b* for split
 - 3. Pass x based on its k-th attribute x_k
 - If $x_k > b$, pass x to the right child
 - If $x_k \leq b$, pass x to the left child

Soft Decision Trees

Soft decision trees (SDT)

- Improve the accuracy of DTs with soft decisions
- Each function f_i is a logistic classifier:

$$f_i(x) = \sigma \big(\mathbf{w}_i^{\mathsf{T}} \mathbf{x} + b_i \big)$$

- Uses all elements at every decision, unlike DTs
- An example x is passed to the children with soft arrival probabilities, e.g., (0.3, 0.7)

Research Motivation

- There are various tree models to be used
- **Q.** Which one should we use for given data?
 - It is hard to find an optimal tree model without a systematic way to categorize/understand them
- We propose a **unifying framework** of trees
 - 1. Generalizes tree models with a few param.
 - 2. Helps finding optimal choices of components
 - 3. Improves the efficiency of implementation

Outline

- Introduction
- Proposed Method
- Further Analysis
- Experiments
- Conclusion

Overview

- We propose **TART** for unifying tree models
 - Generalizes deep, shallow, binary, or *n*-way trees
- TART consists of the two main ideas:
 - 1. Transition matrix representation of trees
 - 2. Optimization with transposed convolutions

Idea 1: Motivation

- Traditionally, to understand a tree model ${\mathcal T}$ is
 - Follow a decision path of each example ${\bf x}$
 - Compute $\delta_0(\mathbf{x})$
 - Compute $\delta_1(\mathbf{x})$
 - Compute $\delta_4(\mathbf{x})$
 - Compute $\delta_9(\mathbf{x})$
 - ...
 - Return the leaf node

 Such decisions are sequential and dependent of previous decisions → hard generalization

Idea 1: Transition Matrices

- Understand decisions as matrix multiplications
 - Given a decision function f
 - Compute the **transition matrix T**_{*i*} for every layer *i*
 - Multiply all transition matrices as $T_3T_2 \cdots T_0$

Idea 1: Diagonal Entries

- \mathbf{T}_i is a diagonal matrix in most tree models
 - Non-zero entries determine the shape of a tree
 - E.g., non-zeros at (2c, c) and (2c + 1, c) represent a binary tree structure, where *c* is the column index

Idea 1: Summary

- We call this transition matrix representation
- Strengths in efficiency
 - Parallel computation in GPUs are well supported
- Strengths in generalization
 - Applicable to all DAG-structured decision models
 - E.g., 3-way or *n*-way trees
 - Separate the decision function and the tree shape
 - We can tune each component independently

Idea 2: Motivation

- It is expensive to make T_i for every layer *i*
 - The cost can grow exponentially with the depth
 - E.g., in a binary tree, the size of T_i is $2^i \times 2^{i+1}$
- Most entries in T_i are zero in many cases
- **Q.** How to avoid the direct generation of T_i ?
 - Note that we want to maintain the generalizability

Idea 2: Transposed Conv.

We use transposed convolutions (TC)

- It is used widely in generative models for images
- Increases the size of input with convolution filters

https://www.researchgate.net/publication/324783775_Text_to_Image_Synthesis_Using_Generative_Adversarial_Networks

Idea 2: TC to Tree Models

- 1-dimensional TCs make a tree structure
- We insert *f* to a convolution kernel
 - It slides in a layer to pass x to the next layer

Idea 2: Various Structures

- Parameters in TCs determine the tree shape
 - Let *W* be the width of a kernel
 - Let *S* be the length of a stride when a kernel slides
- Tree models with different values of W and S:

Outline

- Introduction
- Proposed Method
- Further Analysis
- Experiments
- Conclusion

Generalizability

- TART generalizes various binary tree models
 - Traditional models use linear decision functions
 - Recent models use deep neural networks as f

Model	$f(\mathbf{x}; \mathbf{ heta}_i)$	$g(\mathbf{x}; heta_j)$
DT [1] SDT [12]	$ \begin{vmatrix} \mathbb{I}(s_i(1_i^{\top}\mathbf{x} - b_i) > 0) \\ \sigma(\mathbf{w}_i^{\top}\mathbf{x} + b_i) \end{vmatrix} $	$ ext{Onehot}(heta_j) \\ ext{Categorical}(heta_j) ext{}$
NDF [3] DNDF [15] NRF [23]	$egin{aligned} \mathrm{MLP}_i(\mathrm{rand}(\mathbf{x})) \ \mathrm{CNN}(\mathbf{x};i) \ \mathrm{CNN}(\mathbf{x};i,\mathrm{depth}(i)) \end{aligned}$	Categorical (θ_j) Categorical (θ_j) Gaussian (θ_j)

Design Parameters

- We introduce five design parameters of TART
 - The depth **D** of a tree
 - The number H of layers in f
 - The number L of layers in g
 - Parameters *W* and *S* for TCs
- We assume f are g are modeled with MLPs
 - To easily control their nonlinearity

Structure-based View

- We categorize existing models with TART
 - D > 0 means a decision-based classifier
 - H > 1 represents nonlinear decision functions
 - L > 1 represents nonlinear leaf classifiers

Models	D	H	L
Logistic regression Multilayer perceptrons [21]	D = 0 $D = 0$	-	$\begin{array}{c} L=1\\ L>1 \end{array}$
Simple ensembles of experts	D > 0	H = 0	Any L
Trees of type 1 [1, 12] Trees of type 2 [15, 23] Trees of type 3 [19, 20]	D > 0 D > 0 D > 0 D > 0	H = 1 H > 1 H = 1	L = 0 $L = 1$ $L > 1$

Promising Tree Structures

- We propose promising structures of trees
 - TART-A is a typical binary tree of depth D = 6
 - TART-B is a small tree having expressive g
 - Tree depth is only D = 2, but g has L = 4 layers
 - TART-C has a balanced structure and classifiers

Model	$\mid W$	S	$\mid D$	H	L	Property
TART-A	2	2	6	1	1	Strong in small data
TART-B	2	2	2	1	4	Strong in large data
TART-C	3	2	3	1	2	Best balance

Outline

- Introduction
- Proposed Method
- Further Analysis
- Experiments
- Conclusion

Datasets

- We use 121 tabular datasets for classification
- We categorize them based on their sizes:
 - They contain 9, 37, and 75 datasets, resp.

Group	Exa	mples	Features	Labels
	Min	Max	$\mathbf{Avg} \pm \mathbf{Std}$	$\mathbf{Avg} \pm \mathbf{Std}$
Large	10,992	130,064	19.0 ± 15.8	8.2 ± 8.5
Mid	1,000	8,124	40.2 ± 48.4	12.2 ± 26.6
Small	10	990	24.4 ± 37.9	4.1 ± 3.7
All	10	130,064	28.8 ± 40.8	6.9 ± 15.5

Classification Accuracy

Q1. How accurate are our TART models?A. They show the highest accuracy in general

- TART models are better than MLPs
 - *l* in MLP-*l* means
 # of layers
- TART-A, B, and C work the best on different sizes

Model	Large	Medium	Small
DT	$88.3{\pm}0.1$	$76.3{\pm}0.2$	$71.9{\pm}0.7$
\mathbf{LR}	$79.1{\pm}0.1$	$80.8{\pm}0.2$	$75.8{\pm}0.3$
$\operatorname{SVM-lin}$	$77.7 {\pm} 0.1$	$79.0{\pm}0.2$	$74.9{\pm}0.5$
SVM-rbf	$87.6 {\pm} 0.0$	81.1 ± 0.1	$\textbf{77.0}{\pm}\textbf{0.2}$
MLP-1	$78.7 {\pm} 0.1$	$78.9{\pm}0.3$	$73.4{\pm}0.4$
MLP-2	$87.8{\pm}0.1$	83.0 ± 0.4	$76.5{\pm}0.4$
MLP-4	$91.8 {\pm} 0.1$	83.0 ± 0.2	$76.8{\pm}0.2$
MLP-8	$91.5{\pm}0.1$	$82.5{\pm}0.3$	$76.0{\pm}0.5$
MLP-16	$85.3{\pm}0.9$	$78.3{\pm}0.2$	$75.1{\pm}0.6$
TART-A	$88.2{\pm}0.2$	$82.6{\pm}0.2$	$77.0{\pm}0.6$
TART-B	$92.1{\pm}0.1$	$82.7{\pm}0.4$	$76.0{\pm}0.3$
TART-C	$89.6{\pm}0.4$	$\textbf{83.1}{\pm}\textbf{0.2}$	$76.3{\pm}0.1$

Training Time

Q2. Does it improve efficiency of tree models? A. TART speeds up training time up to $36.3 \times$

• We compare various implementations of SDTs

Outline

- Introduction
- Proposed Method
- Further Analysis
- Experiments
- <u>Conclusion</u>

Conclusion

- We propose **TART** for unifying tree models
 - Transition matrix representation
 - Allows us to represent a tree with matrix multiplications
 - Optimization with transposed convolutions
 - Improves efficiency without losing the generalizability
- The main strengths of TART are
 - We can easily search for an optimal tree model
 - We can utilize parallel computations in GPUs

Thank You!

Jaemin Yoo (jaeminyoo@cmu.edu)

https://github.com/leesael/TART