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Tree Models

• Tree models have been used for various tasks
• They make hierarchical decisions, which split 

given examples into leaf nodes

2022. 4. 28. Jaemin Yoo (SNU) 3

https://regenerativetoday.com/simple-explanation-on-how-decision-tree-algorithm-makes-decisions/



Why Tree Models?

• Tree models make interpretable decisions
• A decision path reflects the characteristic of 𝐱
• Similar examples go to the same leaf node
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https://commons.wikimedia.org/wiki/File:Simple_decision_tree.svg



Components of Trees

• Tree models consist of three components:
• Decision function 𝑓! at each internal node 𝑖

• How to pass 𝐱 to the next layer
• Classifier function 𝑔" at each leaf node 𝑙

• How to make the final prediction
• Tree shape

• How given examples are clustered

• There are various types of tree models
• Decision trees, soft decision trees, and so on
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Decision Trees

• Decision trees (DT)
• The simplest and most popular tree models 

• Each function 𝑓" of DTs works as follows:
1. Pick a feature index 𝑘
2. Learn the best value 𝑏 for split
3. Pass 𝐱 based on its 𝑘-th attribute 𝑥#

• If 𝑥! > 𝑏, pass 𝑥 to the right child
• If 𝑥! ≤ 𝑏, pass 𝑥 to the left child

2022. 4. 28. Jaemin Yoo (SNU) 6



Soft Decision Trees

• Soft decision trees (SDT)
• Improve the accuracy of DTs with soft decisions

• Each function 𝑓" is a logistic classifier:

𝑓" 𝑥 = 𝜎 𝐰"
'𝐱 + 𝑏"

• Uses all elements at every decision, unlike DTs
• An example 𝑥 is passed to the children with soft 

arrival probabilities, e.g., 0.3, 0.7
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Research Motivation

• There are various tree models to be used
Q. Which one should we use for given data?

• It is hard to find an optimal tree model without a 
systematic way to categorize/understand them

• We propose a unifying framework of trees
1. Generalizes tree models with a few param.
2. Helps finding optimal choices of components
3. Improves the efficiency of implementation
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Overview

• We propose TART for unifying tree models
• Generalizes deep, shallow, binary, or 𝑛-way trees

• TART consists of the two main ideas:
1. Transition matrix representation of trees
2. Optimization with transposed convolutions
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Idea 1: Motivation

• Traditionally, to understand a tree model 𝒯 is
• Follow a decision path of each example 𝐱

• Compute 𝛿" 𝐱
• Compute 𝛿# 𝐱
• Compute 𝛿$ 𝐱
• Compute 𝛿% 𝐱
• …
• Return the leaf node

• Such decisions are sequential and dependent of 
previous decisions → hard generalization
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Idea 1: Transition Matrices

• Understand decisions as matrix multiplications
• Given a decision function 𝑓
• Compute the transition matrix 𝐓! for every layer 𝑖
• Multiply all transition matrices as 𝐓$𝐓%⋯𝐓&
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𝐓! 𝐩!𝐩!'(

𝑓 𝑥; 𝜃! …



Idea 1: Diagonal Entries

• 𝐓" is a diagonal matrix in most tree models
• Non-zero entries determine the shape of a tree

• E.g., non-zeros at (2𝑐, 𝑐) and (2𝑐 + 1, 𝑐) represent a binary 
tree structure, where 𝑐 is the column index
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Idea 1: Summary

• We call this transition matrix representation
• Strengths in efficiency

• Parallel computation in GPUs are well supported

• Strengths in generalization
• Applicable to all DAG-structured decision models

• E.g., 3-way or 𝑛-way trees
• Separate the decision function and the tree shape

• We can tune each component independently
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Idea 2: Motivation

• It is expensive to make 𝐓" for every layer 𝑖
• The cost can grow exponentially with the depth
• E.g., in a binary tree, the size of 𝑇! is 2! × 2!'(

• Most entries in 𝐓" are zero in many cases
Q. How to avoid the direct generation of 𝐓"?

• Note that we want to maintain the generalizability
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Idea 2: Transposed Conv.

• We use transposed convolutions (TC)
• It is used widely in generative models for images
• Increases the size of input with convolution filters
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https://www.researchgate.net/publication/324783775_Text_to_Image_Synthesis_Using_Generative_Adversarial_Networks



Idea 2: TC to Tree Models

• 1-dimensional TCs make a tree structure
• We insert 𝑓 to a convolution kernel

• It slides in a layer to pass 𝑥 to the next layer
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Idea 2: Various Structures

• Parameters in TCs determine the tree shape
• Let 𝑊 be the width of a kernel
• Let 𝑆 be the length of a stride when a kernel slides

• Tree models with different values of 𝑊 and 𝑆:
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Generalizability

• TART generalizes various binary tree models
• Traditional models use linear decision functions
• Recent models use deep neural networks as 𝑓
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Design Parameters

• We introduce five design parameters of TART
• The depth 𝐷 of a tree
• The number 𝐻 of layers in 𝑓
• The number 𝐿 of layers in 𝑔
• Parameters 𝑊 and 𝑆 for TCs

• We assume 𝑓 are 𝑔 are modeled with MLPs
• To easily control their nonlinearity
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Structure-based View

• We categorize existing models with TART
• 𝐷 > 0 means a decision-based classifier
• 𝐻 > 1 represents nonlinear decision functions
• 𝐿 > 1 represents nonlinear leaf classifiers
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Promising Tree Structures

• We propose promising structures of trees
• TART-A is a typical binary tree of depth 𝐷 = 6
• TART-B is a small tree having expressive 𝑔

• Tree depth is only 𝐷 = 2, but 𝑔 has 𝐿 = 4 layers
• TART-C has a balanced structure and classifiers
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Datasets

• We use 121 tabular datasets for classification
• We categorize them based on their sizes:

• They contain 9, 37, and 75 datasets, resp.
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Classification Accuracy

Q1. How accurate are our TART models?
A. They show the highest accuracy in general

• TART models are
better than MLPs

• 𝑙 in MLP-𝑙 means
# of layers

• TART-A, B, and C
work the best on
different sizes
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Training Time

Q2. Does it improve efficiency of tree models?
A. TART speeds up training time up to 36.3×

• We compare various implementations of SDTs
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Conclusion

• We propose TART for unifying tree models
• Transition matrix representation

• Allows us to represent a tree with matrix multiplications
• Optimization with transposed convolutions

• Improves efficiency without losing the generalizability

• The main strengths of TART are
• We can easily search for an optimal tree model
• We can utilize parallel computations in GPUs
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Thank You!
Jaemin Yoo (jaeminyoo@cmu.edu)

https://github.com/leesael/TART
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