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Black Box

* Deep neural network is a black box
* Its decision process is not interpretable
« Difficult to trust decisions even with high accuracy

Black Box
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I;iterpretable ML (1)

» Research to interpret a model’s decisions
 Important especially in bio or medical domains

* Global interpretability
« A model’s decision process is itself interpretable
 Linear models or decision trees

* Local interpretability
* To explain decisions made by black box models
* Recent works for deep neural networks
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Interpretable ML (2)

» Research to interpret a model’s decisions
 Important especially in bio or medical domains

* Global interpretability «
« A model’s decision process is itself interpretable
 Global interpretability makes reliable decisions

* Feature-based classification «
« Simple models can be better than neural networks
* Generalizability is more important the capability
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* Tree models provide global interpretability

« Each decision is represented as a path in the tree,
which has its own meaning

Tear production rate
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not young
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https://www.cs.cmu.edu/~bhiksha/courses/10-601/decisiontrees/

Limitations of Tree Models

 Linear decisions

 Restrict the overall representation power
« Make it difficult to learn complex decision rules

» Large tree depth

 Limits the interpretability of models

* Tree depth means the complexity of interpretation
* Is a tree still interpretable with large depth d > 107
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I;}oblem Definition

 Given a feature-based dataset D = {(x;, v;)};
* No structural information exists in x
« Each element in x is itself meaningful

* Train an interpretable tree classifier f

 Maximizing its accuracy and interpretability
« Addressing the limitations of previous models
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Decision Trees

* One of the most popular tree models
* Has been used for decades
« Learns an explicit decision rule at each branch
 For instance, to pass x to the left child if x3 > 3

« Strength

* |ts decision process is clear and interpretable

- Weakness
* |t easily overfits, making limited performance
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Soft Decision Trees (1)

* Improve the representation power of DTs
» Perform a soft decision with all features

« Learn a soft target distribution at each leaf

« Strength

 Larger capability to learn complex decision rules
 Weakness

 Less interpretability due to the soft decisions
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Soft Decision Trees (2)

« SDTs are characterized by soft decisions

* The probability f; at node i to pass x to the
right child is

fi = o(w/x + b;)

* w; and b; are learnable parameters at node i
* ¢ is the sigmoid function for the split
* The probability to the leftis 1 — f; thanks to a(+)
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Soft Decision Trees (3)

* The interpretability is worse than that of DTs
« Because all features are used for every decision
» Each decision path involves O(dm) parameters
* d is the depth, and m is the number of features

« EDIT (ICDM 2019) focused on decreasing m

* |t learns a sparse weight vector at each branch
« However, the large depth d remains the same
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Overview (1)

* Gaussian Soft Decision Trees (GSDT)

* Tree model having a multi-branched structure
* Decisions are modeled as Gaussian mixtures
« Address the limitations of previous tree models

 Main ideas
« Gaussian decisions
* Low-rank perturbation
« Path regularization
» Post-optimization
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Overview (2)

« GSDT first computes the arrival probability r(x)
* Then, the prediction is done by a single leaf:

y(x) = p; where i = argmax, 1, (Xx)

* p; is the class distribution learned by leaf i

* The training is done by a gradient-based way
 All parameters are updated at the same time
* We minimize the hinge loss for classification
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Gaussian Decisions (1)

* We make all decisions as Gaussian mixtures

* This enables us to preserve the interpretability
even with the nonlinearity of decisions

coo

Image from https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95
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Gaussian Decisions (2)

* The probability f;;(x) of x from node i to j is

) = exp(£(6; | x))
J5™) = S~ (£ (x| )

L is the log likelihood of x, which is defined as
1
L(O;]|x)= —5 ((x— uj)TEj_l(x — ;) + log det(X;) + dlog(2m)) .

* uj and Z; are learned through backpropagation
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Gaussian Decisions (3)

« Gaussian decisions make several advantages
* Nonlinearity
« Each branch can learn a complex decision function
* Interpretability of decisions
- fi;j(x) is itself interpretable as a probability
* Interpretability of parameters
* u; summarizes the examples arriving at node i

« ¥; gives insights about the given features
« E.g., which feature is more important than others?
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Gaussian Decisions (4)

« What if we apply multiple branches directly to
soft decision trees?

* It makes multiple children at each branch as

p(x) = softmax(Wx + b)

 However, p becomes no longer interpretable
* w;; # the correlation between x; and p;
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ﬁbw-Rank Perturbation (1)

* It is burdensome to learn a full matrix ;
- Because of the log det(Z;) and ;! operations

 Diagonal covariance is a simple choice
« But it ignores the correlations between features

* We propose low-rank perturbation
« Strengthen the diagonal X; with correlations
* Involve only 0 (m) additional parameters
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20
Low-Rank Perturbation (2)

 Our covariance matrix at each node i is
Y, = diag(log(1 + exp(a;))) + UUT

« g; € R™is a learnable vector
« U e R™*K js a learnable matrix

* k is the target rank
 We set k to 1 or 2 in experiments
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I;ath Regularization

* How to encourage GSDT to utilize all leaves?
« GSDT is prone to use only a few leaf nodes

* We add the path regularizer to the objective

(B Z r;i(B)logr;(B) where r(B) = % Z r(x),

JEN4

* [;-(B) calculates the negative entropy of r(B)
 r(B) is the mean arrival probability for batch B
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I;ost-Optimization (1)

» Each leaf i corresponds to a set of examples
« That arrive at the leaf node i at the inference
e X; = {x € D| argmax;, 1, (x) = i}

* Post-optimization
* Our technique to maximize the correspondence

* We make the dist. IV; represent the examples X;;
* The interpretability of leaves further improves
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Post-Optimization (2)

* The algorithm is given as follows:
* uj and X; are updated to represent the set X;

Algorithm 1: Post-optimization of the leaf Gaussians of GSDT.

Input: A trained GSDT M, a set D of training features, a learning rate « for
the covariances, and the number n of iterations

1: for leaf node 5 in M do

2 X; + {x € D | argmaxy rr(x) = j}

3 D e x; X

4: forie [l,n| do

5: | < sum((XZ; — cov(X;))?)

6: 2j<—2j—a-8l/82j

7 end for

8: end for

9: Fine-tune the whole parameters of M for a fixed number of epochs

2021. 4. 25. Jaemin Yoo (SNU)
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I;_wxperimental Setup

 Datasets

* We use six public feature-based datasets

« Taken from UCI Repository or Kaggle

 All of them are bio and medical domains
* Interpretability is a crucial factor

« Baselines

* Interpretable models: LR, SVM, DT, SDT, EDIiT
* Black box models: RF, MLP
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Classification Accuracy

« GSDT shows the best accuracy in five datasets
« GSDT outperforms even strong black box models

Model Brain Breast Breast-wis Diabetes Heart  Hepatitis
LR 63.4 £ 0.0 655+ 00 97.1+0.0 76.0£ 0.0 86.9 + 0.0 774 + 0.0
SVM-Ilin | 61.0 & 0.0 62.1 £ 0.0 97.1 £ 0.0 76.6 = 0.0 83.6 £ 0.0 77.4 4+ 0.0
SVM-rbf | 58.5 + 0.0 70.7 £ 0.0 97.1 £ 0.0 76.0 £ 0.0 86.9 &+ 0.0 77.4 4+ 0.0
DT 70.5 + 0.7 688 +£1.6 96.0+09 69.7+ 16 672+1.6 70.0+6.9
SDT 66.8 £ 50 73.3£52 979+0.0 76.0£ 0.7 80.7 &£ 2.7 67.3 £ 4.7
EDiT 585+ 0.0 75.0+£26 971 +0.2 746+ 15 852423 77.8 + 3.8
MLP 734+ 1.7 73.3+23 986 +0.2 75.0+£ 08 80.5+ 1.5 64.2 + 3.0
RF 68.0 £ 2.3 76.6 0.8 98.1 £0.3 73.4+0.7 84.8+ 0.8 70.3 +24
GSDT [(73.5 £+ 1.577.2 + 1.7 98.8 + 0.6 76.0 = 0.9 86.9 + 1.2 78.2 + 3.1
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Structure Visualization

 GSDT provides a clear decision process
« Each mean vector is a representative of the path

Feature x = [[0:54] -0.72 [ -0.09 [-0.31 [-0.56 [ -0.73 [ -0.99 [ -0.62 [ -0.35 ] (=T

@ Y

=0138] -0.1 |-0.2 0.2 0.0 | 0.1
-0.1 [-0.2 [-0.3 0.0] 0.1] 0.2 Root
0.0 |-0.1 | 0.1 0.0 0.1] 0.0

Features

x1: Clump thickness

X ,: Uniformity of cell size
x3: Uniformity of cell shape
x4: Marginal adhesion

(0.28,0.72) xo: Si itheli i
) 5: Single epithelial cell size
Node 1 | l: MR x¢: Bare nuclei
X-: Bland chromatin
-0.5 (-0.4 |-04 0.7 |-06 ’07 xg: Normal nucleoli
-04 1-0.3 |-0.5 Xg9: Mitoses
-04 |-04 |-0.2
Diagnosis (as labels)
y ¥, : Benign
g 073 027 |o026] 074 ]| [ 073] 027 |o027] 073]| Y. ¥,: Malignant
o
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« GSDT learns meaningful node distributions
* The root node splits examples horizontally
* The internal nodes split examples vertically
* Nodes 1 and 2 take different sets of examples
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(b) Decision by the root.
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Covariance Matrix

e Our low-rank perturbation makes the best fit

* The identity and diagonal covariances are simple
but fail to model the given distributions

6 6 6
+ Nodel + Nodel
4 4 X Node 2 44 X Node?2 i
y Node 3 y Node 3
2 - 2 - *.;. Node 4 peA 24 t‘;Node4 <% 5
0 0 1 & 0 . : 3
-21 -2 -2 -
-4 - e -4
—6 T T T T T _6 T T T T T —6 T T T T T
-6 -4 =2 0 2 4 6 -6 -4 =2 0 2 4 6 -6 -4 =2 0 2 4 6
(a) Identity. (b) Only diagonal. (c) Low-Rank Perturbed.
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Conclusion

* Gaussian Soft Decision Trees (GSDT)

* Our novel tree model for interpretable learning
 Multi-branched structure with nonlinear decisions

* Main ideas
« Gaussian decisions with low-rank perturbation
« Path regularization
» Post-optimization

* Experiments
« GSDT outperforms baselines with interpretability
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Thank you!

Code and datasets:
https://github.com/leesael/GSDT
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