

Gaussian Soft Decision Trees for Interpretable Feature-Based Classification

Jaemin Yoo¹ and Lee Sael²

¹ Seoul National University
 ² Ajou University
 PAKDD 2021

Outline

- Introduction
- Previous Works
- Proposed Method
- Experiments
- Conclusion

- Deep neural network is a black box
 - Its decision process is not interpretable
 - Difficult to trust decisions even with high accuracy

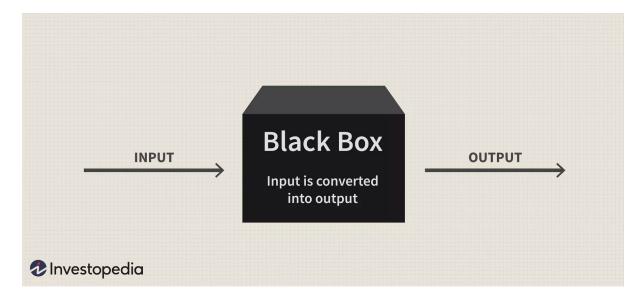


Image from https://www.investopedia.com/terms/b/blackbox.asp

Interpretable ML (1)

- Research to interpret a model's decisions
 - Important especially in bio or medical domains
- Global interpretability
 - A model's decision process is itself interpretable
 - Linear models or decision trees
- Local interpretability
 - To explain decisions made by black box models
 - Recent works for deep neural networks

Interpretable ML (2)

- Research to interpret a model's decisions
 - Important especially in bio or medical domains
- Global interpretability

- Global interpretability makes reliable decisions
- Feature-based classification
 - Simple models can be better than neural networks
 - Generalizability is more important the capability

Tree Models

- Tree models provide global interpretability
 - Each decision is represented as a path in the tree, which has its own meaning

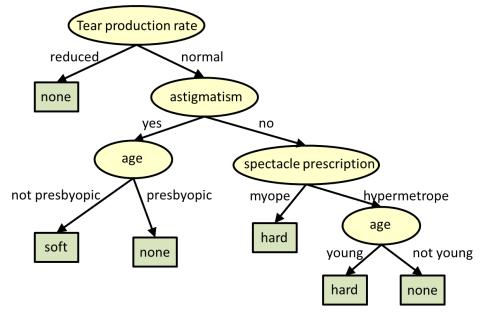


Image from https://www.cs.cmu.edu/~bhiksha/courses/10-601/decisiontrees/

Limitations of Tree Models

Linear decisions

- Restrict the overall representation power
- Make it difficult to learn complex decision rules

Large tree depth

- Limits the interpretability of models
- Tree depth means the complexity of interpretation
- Is a tree still interpretable with large depth d > 10?

Problem Definition

- **Given** a feature-based dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_i$
 - No structural information exists in x
 - Each element in x is itself meaningful
- **Train** an interpretable tree classifier f
- Maximizing its accuracy and interpretability
 - Addressing the limitations of previous models

Outline

- Introduction
- Previous Works
- Proposed Method
- Experiments
- Conclusion

Decision Trees

- One of the most popular tree models
 - Has been used for decades
 - Learns an explicit decision rule at each branch
 - For instance, to pass **x** to the left child if $x_3 > 3$

Strength

- Its decision process is clear and interpretable
- Weakness
 - It easily overfits, making limited performance

Soft Decision Trees (1)

- Improve the representation power of DTs
 - Perform a soft decision with all features
 - Learn a soft target distribution at each leaf
- Strength
 - Larger capability to learn complex decision rules
- Weakness
 - Less interpretability due to the soft decisions

Soft Decision Trees (2)

- SDTs are characterized by **soft decisions**
- The probability f_i at node i to pass x to the right child is

$$f_i = \sigma \big(\mathbf{w}_i^{\mathsf{T}} \mathbf{x} + b_i \big)$$

- \mathbf{w}_i and b_i are learnable parameters at node *i*
- σ is the sigmoid function for the split
- The probability to the left is $1 f_i$ thanks to $\sigma(\cdot)$

Soft Decision Trees (3)

- The interpretability is worse than that of DTs
 - Because all features are used for every decision
 - Each decision path involves O(dm) parameters
 - d is the depth, and m is the number of features
- EDiT (ICDM 2019) focused on decreasing m
 - It learns a sparse weight vector at each branch
 - However, the large depth d remains the same

Outline

- Introduction
- Previous Works

Proposed Method

- Experiments
- Conclusion

Overview (1)

Gaussian Soft Decision Trees (GSDT)

- Tree model having a multi-branched structure
- Decisions are modeled as Gaussian mixtures
- Address the limitations of previous tree models

Main ideas

- Gaussian decisions
- Low-rank perturbation
- Path regularization
- Post-optimization

Overview (2)

- GSDT first computes the arrival probability $\boldsymbol{r}(\boldsymbol{x})$
- Then, the prediction is done by a single leaf:

 $\hat{y}(\mathbf{x}) = \mathbf{p}_i$ where $i = \operatorname{argmax}_k r_k(\mathbf{x})$

- \mathbf{p}_i is the class distribution learned by leaf *i*
- The training is done by a gradient-based way
 - All parameters are updated at the same time
 - We minimize the hinge loss for classification

Gaussian Decisions (1)

- We make all decisions as Gaussian mixtures
- This enables us to preserve the interpretability even with the nonlinearity of decisions

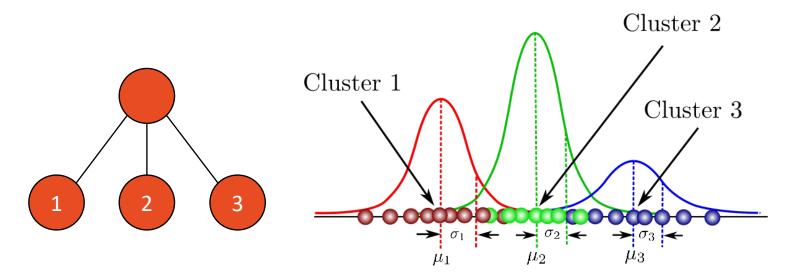


Image from https://towardsdatascience.com/gaussian-mixture-models-explained-6986aaf5a95

Gaussian Decisions (2)

• The probability $f_{ij}(\mathbf{x})$ of \mathbf{x} from node i to j is

$$f_{ij}(\mathbf{x}) = \frac{\exp(\mathcal{L}(\theta_j \mid \mathbf{x}))}{\sum_k \exp(\mathcal{L}(\theta_k \mid \mathbf{x}))},$$

- ${\mathcal L}$ is the log likelihood of x, which is defined as

$$\mathcal{L}(\theta_j \mid \mathbf{x}) = -\frac{1}{2} \left((\mathbf{x} - \boldsymbol{\mu}_j)^\top \boldsymbol{\Sigma}_j^{-1} (\mathbf{x} - \boldsymbol{\mu}_j) + \log \det(\boldsymbol{\Sigma}_j) + d \log(2\pi) \right).$$

• μ_j and Σ_j are learned through backpropagation

Gaussian Decisions (3)

- Gaussian decisions make several advantages
 - Nonlinearity
 - Each branch can learn a complex decision function
 - Interpretability of decisions
 - $f_{ij}(\mathbf{x})$ is itself interpretable as a probability
 - Interpretability of parameters
 - μ_i summarizes the examples arriving at node *i*
 - Σ_i gives insights about the given features
 - E.g., which feature is more important than others?

Gaussian Decisions (4)

- What if we apply multiple branches directly to soft decision trees?
 - It makes multiple children at each branch as

$$\mathbf{p}(\mathbf{x}) = \operatorname{softmax}(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- However, \mathbf{p} becomes no longer interpretable
 - $w_{ij} \neq$ the correlation between x_j and p_i

Low-Rank Perturbation (1)

- It is burdensome to learn a full matrix Σ_i
 - Because of the $\log \det(\Sigma_i)$ and Σ_i^{-1} operations
- Diagonal covariance is a simple choice
 - But it ignores the correlations between features
- We propose low-rank perturbation
 - Strengthen the diagonal Σ_i with correlations
 - Involve only O(m) additional parameters

Low-Rank Perturbation (2)

• Our covariance matrix at each node *i* is

$\Sigma_i = \operatorname{diag}(\log(1 + \exp(\sigma_i))) + \mathbf{U}\mathbf{U}^{\mathsf{T}}$

- $\sigma_i \in \mathbb{R}^m$ is a learnable vector
- $\mathbf{U} \in \mathbb{R}^{m \times k}$ is a learnable matrix
- *k* is the target rank
 - We set k to 1 or 2 in experiments

Path Regularization

- How to encourage GSDT to utilize all leaves?
 GSDT is prone to use only a few leaf nodes
- We add the **path regularizer** to the objective

$$l_{
m lr}(\mathcal{B}) = \sum_{j\in\mathcal{N}_d} r_j(\mathcal{B}) \log r_j(\mathcal{B}) \ \ ext{where} \ \ \mathbf{r}(\mathcal{B}) = rac{1}{|\mathcal{B}|} \sum_{\mathbf{x}\in\mathcal{B}} \mathbf{r}(\mathbf{x}),$$

- $l_{lr}(\mathcal{B})$ calculates the negative entropy of $\mathbf{r}(\mathcal{B})$
- $r(\mathcal{B})$ is the mean arrival probability for batch \mathcal{B}

Post-Optimization (1)

- Each leaf *i* corresponds to a set of examples
 - That arrive at the leaf node *i* at the inference
 - $\mathcal{X}_i = \{x \in \mathcal{D} | \operatorname{argmax}_k r_k(\mathbf{x}) = i\}$

Post-optimization

- Our technique to maximize the correspondence
- We make the dist. \mathcal{N}_i represent the examples \mathcal{X}_i
- The interpretability of leaves further improves

Post-Optimization (2)

- The algorithm is given as follows:
 - μ_i and Σ_i are updated to represent the set \mathcal{X}_i

Algorithm 1: Post-optimization of the leaf Gaussians of GSDT.

Input: A trained GSDT M, a set \mathcal{D} of training features, a learning rate α for the covariances, and the number n of iterations

1: for leaf node j in M do 2: $\mathcal{X}_j \leftarrow \{\mathbf{x} \in \mathcal{D} \mid \arg \max_k r_k(\mathbf{x}) = j\}$ 3: $\mu_j \leftarrow \sum_{\mathbf{x} \in \mathcal{X}_j} \mathbf{x}$ 4: for $i \in [1, n]$ do 5: $l \leftarrow \operatorname{sum}((\Sigma_j - \operatorname{cov}(\mathcal{X}_j))^2)$ 6: $\Sigma_j \leftarrow \Sigma_j - \alpha \cdot \partial l / \partial \Sigma_j$ 7: end for 8: end for

9: Fine-tune the whole parameters of M for a fixed number of epochs

Outline

- Introduction
- Previous Works
- Proposed Method
- Experiments
- Conclusion

Experimental Setup

Datasets

- We use six public feature-based datasets
- Taken from UCI Repository or Kaggle
- All of them are bio and medical domains
 - Interpretability is a crucial factor

Baselines

- Interpretable models: LR, SVM, DT, SDT, EDiT
- Black box models: RF, MLP

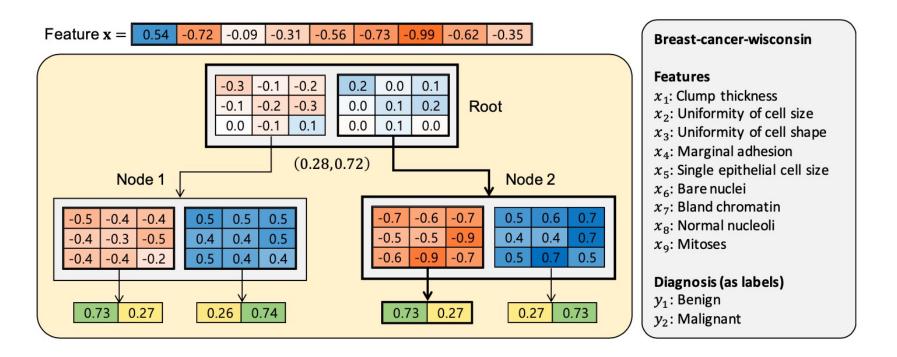
Classification Accuracy

- GSDT shows the best accuracy in five datasets
 - GSDT outperforms even strong black box models

Model	Brain	Breast	Breast-wis	Diabetes	Heart	Hepatitis
\mathbf{LR}	63.4 ± 0.0	65.5 ± 0.0	97.1 ± 0.0	76.0 ± 0.0	$\textbf{86.9} \pm \textbf{0.0}$	77.4 ± 0.0
$\operatorname{SVM-lin}$	61.0 ± 0.0	62.1 ± 0.0	97.1 ± 0.0	$\textbf{76.6} \pm \textbf{0.0}$	83.6 ± 0.0	77.4 ± 0.0
SVM-rbf	58.5 ± 0.0	70.7 ± 0.0	97.1 ± 0.0	$\underline{76.0\pm0.0}$	$\textbf{86.9} \pm \textbf{0.0}$	77.4 ± 0.0
DT	70.5 ± 0.7	68.8 ± 1.6	96.0 ± 0.9	$\overline{69.7\pm1.6}$	67.2 ± 1.6	70.0 ± 6.9
SDT	66.8 ± 5.0	73.3 ± 5.2	97.9 ± 0.0	$\underline{76.0\pm0.7}$	80.7 ± 2.7	67.3 ± 4.7
EDiT	58.5 ± 0.0	75.0 ± 2.6	97.1 ± 0.2	74.6 ± 1.5	85.2 ± 2.3	$\underline{77.8\pm3.8}$
MLP	73.4 ± 1.7	73.3 ± 2.3	98.6 ± 0.2	75.0 ± 0.8	80.5 ± 1.5	64.2 ± 3.0
RF	$\overline{68.0\pm2.3}$	$\underline{76.6\pm0.8}$	$\overline{98.1\pm0.3}$	73.4 ± 0.7	84.8 ± 0.8	70.3 ± 2.4
GSDT	$\big \textbf{73.5}\pm\textbf{1.5}$	$\textbf{77.2} \pm \textbf{1.7}$	98.8 ± 0.6	$\underline{76.0\pm0.9}$	$\textbf{86.9} \pm \textbf{1.2}$	$\textbf{78.2} \pm \textbf{3.1}$

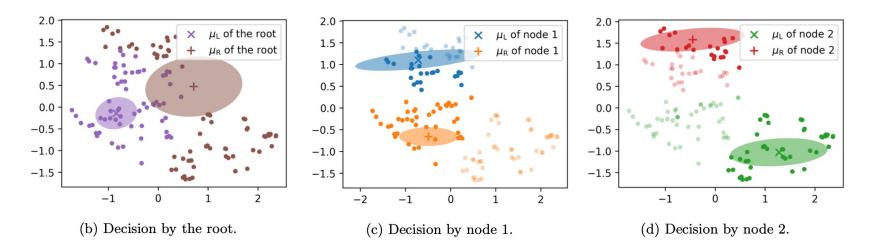
Structure Visualization

- GSDT provides a clear decision process
 - Each mean vector is a representative of the path



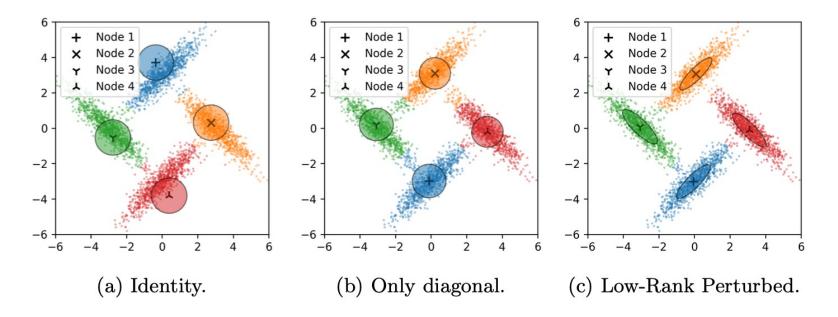
Learned Distributions

- GSDT learns meaningful node distributions
 - The root node splits examples horizontally
 - The internal nodes split examples vertically
 - Nodes 1 and 2 take different sets of examples



Covariance Matrix

- Our low-rank perturbation makes the best fit
 - The identity and diagonal covariances are simple but fail to model the given distributions



Outline

- Introduction
- Previous Works
- Proposed Method
- Experiments
- <u>Conclusion</u>

Conclusion

Gaussian Soft Decision Trees (GSDT)

- Our novel tree model for interpretable learning
- Multi-branched structure with nonlinear decisions
- Main ideas
 - Gaussian decisions with low-rank perturbation
 - Path regularization
 - Post-optimization
- Experiments
 - GSDT outperforms baselines with interpretability

Thank you!

Code and datasets:

https://github.com/leesael/GSDT