

Accurate Graph-Based PU Learning without Class Prior

Jaemin Yoo^{1,*}, Junghun Kim^{1,*}, Hoyoung Yoon^{1,*}, Geonsoo Kim², Changwon Jang², and U Kang¹

* Equal contribution

¹ Seoul National University

² NCSOFT

ICDM 2021

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

PU Learning (1)

Positive-unlabeled (PU) learning

- Binary classification with limited observations
- Negative examples are unseen during training
 - There are only positive and unlabeled examples

PU Learning (2)

- PU learning is **common** in the real world
 - Detecting review manipulation
 - Detecting bot accounts in a social network
- Consider detecting review manipulation:
 - We detected 100 reviews among 1000 ones
 - Are the remaining 900 reviews all normal?
 - They should be treated **unlabeled**, not **negative**

Graphs

- Many datasets are represented as graphs
 - Graphs allow us to understand the relationships
- PU learning is common also in graph data
 - Social networks, streaming services, ...

Problem Definition

- Graph-based PU learning
 - Given
 - Undirected graph $G = (\mathcal{V}, \mathcal{E})$
 - ${\mathcal V}$ and ${\mathcal E}$ are the sets of nodes and edges, resp.
 - Feature matrix $\mathbf{X} \in \mathbb{R}^{|\mathcal{V}| \times d}$
 - *d* is the number of features
 - Set $\mathcal{P} \subset \mathcal{V}$ of positive nodes
 - The remaining nodes $\mathcal{U}=\mathcal{V}\setminus\mathcal{P}$ are unlabeled
 - Classify
 - Each node $u \in \mathcal{U}$ into positive or negative

Class Prior (1)

- Existing models require the class prior $\pi_{\rm p}$
 - The ratio of positive nodes among unlabeled ones
- π_p provides rich information to PU learning
 - Assume that $|\mathcal{U}| = 16$ and $\pi_{\rm p} = 0.38$
 - Then, we know that exactly 6 nodes in $\ensuremath{\mathcal{U}}$ are positive

Class Prior (2)

- However, π_p is **not available** in most cases
 - π_p requires additional domain knowledge:
 - The ratio of manipulated reviews
 - The ratio of bot accounts in a social network

Q1. How can we solve PU learning without π_p ? **Q2.** How can we estimate π_p only from given data?

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Overview

- We propose **GRAB** for accurate PU learning
 - It estimates the unknown prior $\pi_{\rm p}$ from data
 - Idea 1. Model the graph as a Markov network
 - Idea 2. Update an estimate $\hat{\pi}_{p}$ through iterations

Objective Function

• Our goal is to minimize the following:

$$\begin{split} \mathcal{L}(\theta; \mathbf{X}, \mathbf{y}, \mathcal{P}, \mathcal{U}) &= \frac{1}{|\mathcal{P}|} \sum_{i \in \mathcal{P}} (-\log \hat{y}_i(+1)) & \begin{array}{l} \text{Positive part} \\ \text{Unlabeled part} \\ &+ \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z} \mid \mathbf{X}, \mathbf{y})} \Big[\frac{1}{|\mathcal{U}|} \sum_{j \in \mathcal{U}} (-\log \hat{y}_j(z_j)) \Big], \end{split}$$

- \hat{y}_i is the prediction of our classifier for each node *i*
- We model each unlabeled node i as a variable Z_i
- The challenge is to model $p(\mathbf{z}|\mathbf{X}, \mathbf{y})$ without prior π_{p}

Markov Network

- We model the graph G as a Markov network
 - Adjacent nodes are likely to have the same state
 - Large $p(\mathbf{z})$ if \mathbf{z} follows the graph structure well

Iterative Optimization

- Then, we minimize $\mathcal{L}(\theta)$ through iterations:
 - Initialization
 - $f \leftarrow A$ graph convolutional network (GCN) classifier
 - Iterative updates
 - Marginalization step
 - $\hat{\mathbf{y}} \leftarrow \text{Make a prediction from the current } f$
 - $B \leftarrow \mathsf{Run}$ graphical inference using \hat{y} as prior
 - Update step
 - $\mathcal{L} \leftarrow \text{Make a new objective function from } B$
 - $f \leftarrow \text{Train a new classifier minimizing } \mathcal{L}(\cdot)$

Marginalization Step

- To approximate $p(\mathbf{z}|\mathbf{X}, \mathbf{y})$ by marginalization
 - 1. Make a prediction $\hat{\mathbf{y}}$ from the current classifier f
 - 2. Run graphical inference treating \hat{y} as priors
 - Specifically, we run loopy belief propagation (LBP)
 - It iteratively propagates the priors through the graph
 - 3. Get an approximate marginal b_i for each node i
 - 4. Return a **belief** matrix $\mathbf{B} \in \mathbb{R}^{|\mathcal{V}| \times 2}$ as a result

Update Step

- We train a new classifier f based on **B**
 - 1. Make a new objective function $\hat{\mathcal{L}}$
 - 2. Train f to minimize the objective function
- The new objective function $\hat{\mathcal{L}}$ is defined as

$$\begin{split} \tilde{\mathcal{L}}(\theta; \mathbf{X}, \mathbf{y}, \mathbf{B}, \mathcal{P}, \mathcal{U}) &= \\ \frac{l: \text{Loss function}}{\bar{y}_i: \text{One-hot label}} \quad \frac{1}{|\mathcal{P}|} \sum_{i \in \mathcal{P}} l(\bar{y}_i, \hat{y}_i) + \frac{1}{|\mathcal{U}|} \sum_{j \in \mathcal{U}} l(\underline{b}_j, \hat{y}_j), \end{split}$$

• b_j is used as an answer for each node $j \in \mathcal{U}$

Outline

- Introduction
- Previous Works
- Experiments
- Conclusion

Datasets

- We use five datasets from different domains
 - Four are public datasets used in previous works
 - MMORPG is a private dataset collected in this work
 - Classify each character into a **normal** user or a **bot**

Name	Nodes	Edges	Features	Pos.	Neg.
Cora ¹	2,708	5,278	1,433	818	1,890
Citeseer ¹	3,327	4,552	3,703	701	2,626
Cora-ML ²	2,995	8,158	2,879	857	2,138
WikiCS ³	11,701	215,603	300	2,679	9,022
MMORPG ⁴	6,312	68,012	136	298	401

Experimental Setup

Evaluation metrics

- F1 score: The average of precision and recall
- Accuracy: The ratio of correct predictions

Competitors

- Representation learning [KDD'16, IJCAI'18]
- General PU learning [ICML'15, NIPS'17]
- Graph-based PU learning [ICMEW'17, CIKM'19]

Classification Accuracy

- Q1. How accurate is GRAB in PU learning?
 - GRAB outperforms all other baselines
 - The prior π_p is given only to the competitors

Method	Cora		Citeseer		Cora-ML	
	F1 (%)	ACC (%)	F1 (%)	ACC (%)	F1 (%)	ACC (%)
GCN+CE	23.0±1.9	84.3±0.2	25.8±2.2	89.6±0.2	26.8±3.0	85.8±0.4
GCN+PULP	40.2 ± 1.7	86.1 ± 0.2	37.1 ± 3.1	90.3 ± 0.4	38.3 ± 1.3	$86.4 {\pm} 0.2$
GCN+URE	50.9 ± 0.8	$88.0 {\pm} 0.1$	42.6 ± 1.7	$90.9 {\pm} 0.2$	54.6 ± 1.8	89.4±0.3
GCN+NRE	76.7 ± 0.9	92.7 ± 0.2	66.2 ± 1.1	93.2±0.2	80.0 ± 0.6	94.1 ± 0.2
Node2Vec	58.1 ± 1.5	87.1 ± 0.4	32.7 ± 2.2	$88.4 {\pm} 0.5$	62.3 ± 1.9	89.1±0.6
ARGVA	62.3±9.4	89.2 ± 1.9	$17.9 \pm 29.$	89.5 ± 2.2	$50.3 \pm 28.$	88.7 ± 3.1
LSDAN	63.5 ± 4.1	89.4±1.0	47.0±19.	91.2±1.3	63.4±3.7	90.1 ± 0.7
GRAB (ours)	80.4±0.2	93.0±0.1	69.7±0.4	92.9±0.1	85.0±0.1	94.9±0.0

No Class Prior

- Q2. How well do competitors work without π_p ?
 - The baselines show consistently lower accuracy
 - The improvement of GRAB is more significant

Method	Cora		Citeseer		Cora-ML	
	F1 (%)	ACC (%)	F1 (%)	ACC (%)	F1 (%)	ACC (%)
GCN+CE	23.1±1.5	84.4±0.2	25.7±2.3	89.6±0.2	26.7±2.7	85.7±0.3
GCN+PULP	40.2 ± 1.7	86.1 ± 0.2	37.1 ± 3.0	90.3 ± 0.4	38.3 ± 1.3	$86.4 {\pm} 0.2$
GCN+URE	42.4 ± 1.5	$86.8 {\pm} 0.2$	39.1 ± 2.0	90.6 ± 0.2	49.1 ± 3.6	$88.6 {\pm} 0.5$
GCN+NRE	70.1 ± 1.6	91.4 ± 0.3	61.8 ± 1.9	$92.8 {\pm} 0.2$	72.9 ± 2.0	92.5 ± 0.4
Node2Vec	53.3 ± 2.1	$87.0 {\pm} 0.6$	29.7 ± 2.2	88.9 ± 0.3	57.4 ± 1.7	$88.8 {\pm} 0.4$
ARGVA	53.7±16.	88.1 ± 2.4	$22.7 \pm 30.$	$89.8 {\pm} 2.2$	$57.1 \pm 21.$	89.7±2.5
LSDAN	52.3±3.9	87.5±0.6	18.4±25.	89.8±2.2	6.3±17.	83.9±1.6
GRAB (ours)	80.4±0.2	93.0±0.1	69.7±0.4	92.9±0.1	85.0±0.1	94.9±0.0

Fewer Observations

- Q3. Does GRAB work well with smaller r_p ?
 - r_p refers to the ratio of **observed** positive nodes
 - GRAB works well with small r_p unlike competitors

Prior Estimation

- Q4. Is the unknown prior estimated well?
 - GRAB updates an estimation through iterations
 - GRAB finds the unknown π_p well from given data

Outline

- Introduction
- Previous Works
- Proposed Method
- <u>Conclusion</u>

Conclusion

- We propose **GRAB** for accurate PU learning
 - GRAB does not require the class prior as an input
- Main ideas
 - Idea 1. Model the graph as a Markov network
 - To design an objective function based on $p(\mathbf{z}|\mathbf{X}, \mathbf{y})$
 - Idea 2. Update an estimate $\hat{\pi}_{p}$ through iterations
 - GRAB runs marginalization and update steps
- Experiments
 - GRAB consistently outperforms existing methods

Thank you!

Jaemin Yoo (jaeminyoo@snu.ac.kr)