

Belief Propagation Network for Hard Inductive Semi-Supervised Learning

Jaemin Yoo, Hyunsik Jeon and U Kang Seoul National University

IJCAI 2019

Jaemin Yoo (SNU)

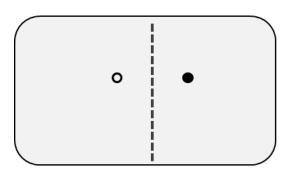
Introduction

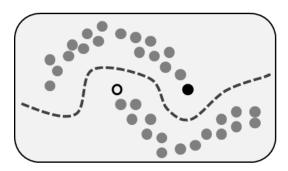
- Proposed Method
- Experiments
- Conclusion

Semi-Supervised Learning

Semi-supervised learning

Leverage unlabeled data for better performance





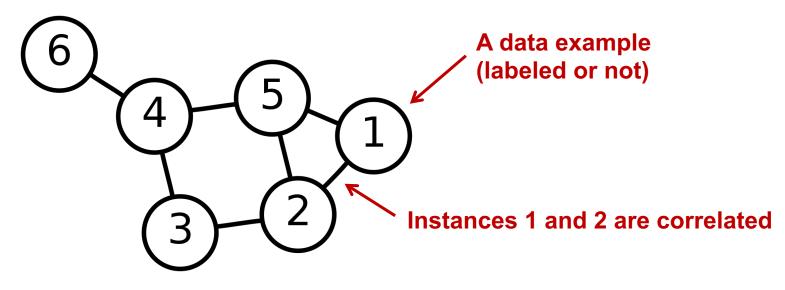
Graph-based semi-supervised learning

- Focus on the data represented as graphs
- Easy to capture relationships between examples

Image from https://en.wikipedia.org/wiki/Semi-supervised_learning

Graph-Based Learning

- Basic assumption of graph-based learning
 Nearby examples are correlated positively
- Model the correlations by neural networks
 GCN (ICLR'17), GAT (ICLR'18), ...



Motivation

- Previous works have naïve assumptions
- 1) A graph is given also at the test time
 No graphs in real-time classification
- 2) Every node has enough neighborhoods
 No neighbors for fresh users or items

How to address these limitations?

Problem Definition

- Problem: hard inductive learning
- Given
 - □ An undirected graph *G*
 - Each node is an example (\mathbf{x}, y) or (\mathbf{x}, \cdot)
 - Labels of only a subset of nodes
- Learn
 - A classifier $f: \mathbf{x} \to y$
 - Predicts each example independently
 - Does not require the graph at the test time

Introduction

Proposed Method

Experiments

Belief Propagation Network

- Novel approach for hard inductive learning
- Separates classification and diffusion steps

Classification

Classify each node *i* independently by *f*(**x**_{*i*})
 The graph structure is not considered at all

Diffusion

- Diffuse the predictions through the graph
- Update f based on the results of diffusion

Classification: MLP

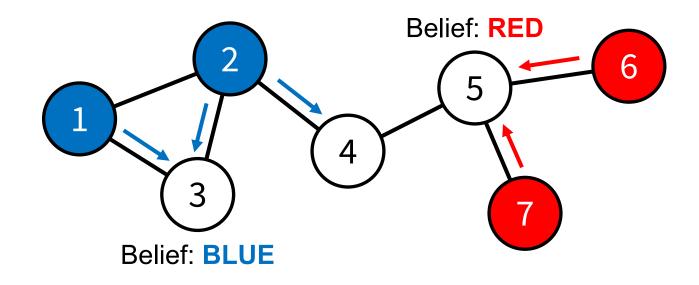
- Any model can be used as a classifier f
- Our choice is a multilayer perceptron (MLP)
 - Single hidden layer of 64 units
 - Tanh as an activation function

 $\phi_i = \operatorname{softmax}(\mathbf{W}_2(\tanh(\mathbf{W}_1\mathbf{x}_i + \mathbf{b}_1)) + \mathbf{b}_2)$

Produce a probability vector ϕ_i for node *i*

Diffusion: LBP

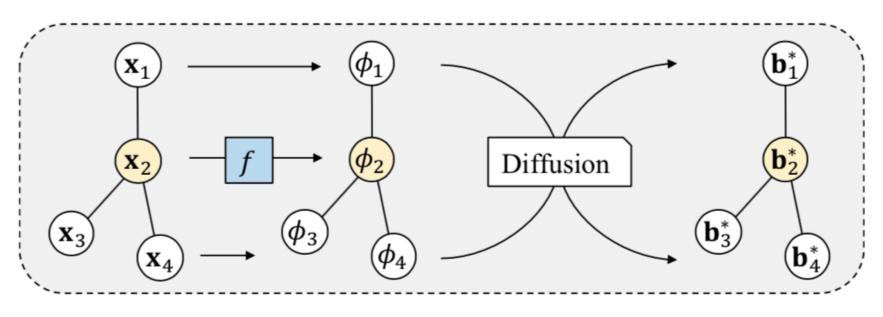
Run loopy belief propagation for diffusion
 Takes predictions of *f* as priors of nodes
 Propagates the priors and computes beliefs



Forward Propagation

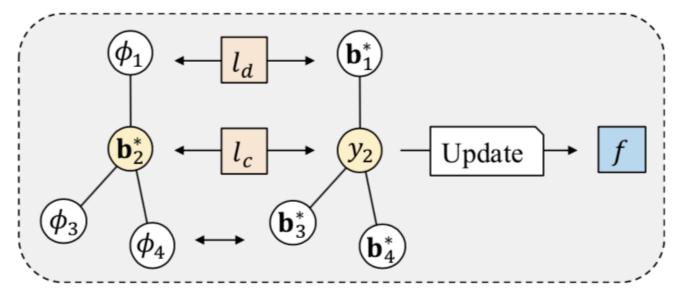
Computes the prior φ_i = f(x_i) of node i
 Diffuses the priors by running LBP

 The belief b^{*}_i of each node i is computed



Backward Propagation

- Compute **two loss functions** l_c and l_d
 - Classification loss l_c for the labeled nodes
 - Induction loss l_d for the unlabeled nodes
- f is updated to minimize the sum of l_c and l_d



Loss Functions

Classification loss

- Typical loss function for classification
- Cross-entropy between labels and beliefs

Induction loss

- Our proposed loss for unlabeled nodes
- KL-divergence between beliefs and priors
- Make f learn the results of LBP as soft labels

Introduction

Proposed Method

Experiments

Datasets

- Solve node classification on four datasets
 - Three datasets are citation graphs
 - Classify the area of each research article
 - The other is an Amazon graph of items
- 20 labeled examples for each class

Name	Nodes	Edges	Attributes	Labels
Pubmed ¹	19,717	44,324	500	3
Cora ¹	2,708	5,278	1,433	7
Citeseer ¹	3,327	4,552	3,703	6
Amazon	32,966	63,285	3,000	3

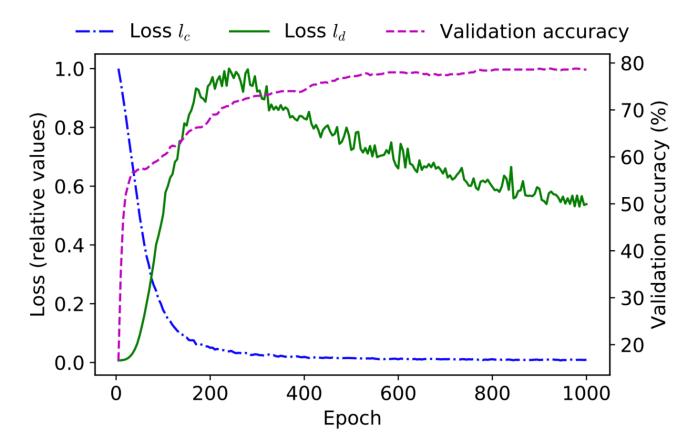
Classification Accuracy

BPN shows the best classification accuracy

Method	Pubmed	Cora	Citeseer	Amazon
Planetoid	$ 74.6 \pm 0.5$	66.2 ± 0.9	66.8 ± 1.0	70.1 ± 1.9
GCN-I	74.1 ± 0.2	67.8 ± 0.6	63.6 ± 0.5	76.5 ± 0.3
SEANO	75.7 ± 0.4	64.5 ± 1.2	66.3 ± 0.8	78.6 ± 0.6
GAT	76.5 ± 0.4	70.1 ± 1.0	66.7 ± 1.0	77.5 ± 0.4
BPN (ours)	\mid 78.3 \pm 0.3	$\textbf{72.2} \pm \textbf{0.5}$	$\textbf{70.1} \pm \textbf{0.9}$	$\textbf{81.5} \pm \textbf{1.3}$

Loss Values

BPN minimizes the two loss functions



Jaemin Yoo (SNU)

Introduction

Graph-based Learning

Proposed Method

- We solve the hard inductive leaning
 - A graph is not given at the test time
- We propose a belief propagation network
 - Classify each node by a classifier f
 - Diffuse the predictions (or priors) by LBP
 - Update f by minimizing two loss functions
- BPN outperforms the SOTA approaches

Thank you ! https://datalab.snu.ac.kr/bpn

Jaemin Yoo (SNU)