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Node Features in Graphs

» Real-world graphs contain node features
« Activity logs of users in a social network
» Abstracts of papers in a citation network

« Many tasks on graphs require such features
* Node classification, link prediction, etc.

https://www.shortstack.com/blog/best-social-networks-to-reach-specific-demographics
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Feature Estimation

» Missing features are common in real graphs
« E.g., user nodes with private profiles

 Feature estimation is essential to utilize node
features in large real graphs

\ Node classification

E{> @O Direct information

CD/ \O j Link prediction

Feature estimation Useful tasks
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Problem Definition

* Given
* An undirected graph ¢ = (V, €)

* Node feature x; for some nodes in V, c V
* X; can be either discrete or continuous vectors

* (Optional) node labels y; for nodes inV, €V

» Discrete labels are often easier to acquire than X
* They provide additional information to V \ V,

* Predict

* Unknown feature x; for nodes in V' \ V,
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Dual Estimation

« We formulate the problem as maximizing
po(X,y|A) with X,§ = F(A;0)

« F is our estimator, and O is the parameters

* That is, we use X and y as the estimation
targets, not as inputs
« F aims to predict X and y from A
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Variational Inference

* Q: How can we maximize pg(X,y|A)?
 Run variational inference with latent var. Z

logpe(X,y | A) 2 L(O)
= EZ~q¢ (Z|X,y,A) [log P6,p Xy |Z,A)]
—Dxr(q4(Z | Xy, A) || p(Z | A)),

« L(0) is the evidence lower bound (ELBO) term
« Term 1 is the conditional likelihood of X and y
* Term 2 is a regularizer on q4(Z) based on p(Z|A)
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Reconstruction Errors

* Term 1 of ELBO is the reconstruction error:
Ez~q4zXy.A) 108 P, (X,y | Z,A)]

 Z introduces conditional independence
 Allows to separate the decoding of x; and y;

= N ()
O
\C N e e O
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KL Divergence Regularizer

» Term 2 of ELBO regularizes the dist. of Z:
—Dx1.(q94(Z | X, y,A) || p(Z | A)),

* Dg,, forces q4(Z) to be closer to p(Z|A)

* The effect of regularization is determined by how
we choose the prior p(Z|A)

* Note that p(Z|A) is assumed with no parameters

08/17/2022 Jaemin Yoo (CMU) 10



Research Motivation

* Previous works ignore the correlations of Z
* By q4(Z) = NV (w, diag(o)) and p(Z) = NV (0,1,)

* The correlations are essential in our case

 Since the graph itself represents the correlations
between target and observed nodes

Q1. How can we consider the correlations of Z.?
Q2. How can we run efficient and stable inference?
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Main ldeas

« Our main ideas for structured inference:
* |[dea 1: GMRF-based prior of Z

* To utilize the graph in probabilistic modeling

* |[dea 2: Low-rank approximation
* To make tractable computation of the Dgy term

* Ildea 3: Unified deterministic inference
 To improve the stability and efficiency of inference

08/17/2022 Jaemin Yoo (CMU) 13



Idea 1: GMRF Prior (1/3)

* ldea 1: We model p(Z|A) as Gaussian MRF
* To utilize the structure A in probabilistic modeling

« GMRF computes the joint probability as

p(z) = é l_[ Vi(zi) l—[ Vij (i, zj),

ieV (i,j)e&

* where ¥; and y;; are node and edge potentials
= Higher potentials make a higher probability p(z)

08/17/2022 Jaemin Yoo (CMU)
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Idea 1: GMRF Prior (2/3)

* The potential functions are defined as

Vi(z;) = eXp(—O.SKiiZ? + hiz;i)
Yij(zi, zj) = exp(—Kjjzizj),

* We set h to zero for the zero-mean of p(Z|A)

* We set K to the normalized graph Laplacian:

K=1-D1/2Ap~1/2

08/17/2022 Jaemin Yoo (CMU)
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Idea 1: GMRF Prior (3/3)

 The GMRF prior allows us to write Dk, as

Dxr(q4(Z | Xy, A) || p(Z | A))
= 0.5(tr(U"KU) +d(tr(K2) — log |Z])) + C,

* which includes K as a structural regularizer

- When we parameterize q4(Z) = V' (U, X)
» U € R™4 and X € R™" are generated from f

08/17/2022 Jaemin Yoo (CMU) 16



ldea 2: Low-Rank X (1/2)

* Q: How can we efficiently compute log|X|?
- Naive computation is 0(n3) due to * € R™*"

* Idea 2: We apply low-rank approximation
* \We assume the low-rank structure of X as

> =pl,+VVT,

* B > 0 is a hyperparameter for the diagonal terms
« V € R™" is a new embedding matrix for X

08/17/2022 Jaemin Yoo (CMU)

17



ldea 2: Low-Rank X (2/2)

* We rewrite the log determinant as

log |2| = log [T + B7'VTV| + log | BL,|,

« where I. € R™" s the r X r identity matrix
e Its complexity is O(r?n + r3), where r K n

08/17/2022 Jaemin Yoo (CMU) 18



Idea 3: Stable Inference (1/3)

* ldea 3: We improve the stability of inference
* By 1) unified and 2) deterministic modeling

* Obs. 3-1: U and V play similar roles in Dg;.
* Uand V are used to model q4(Z) = V(U, Z)

« U € R™? js for the mean
e V € R™ is for the covariance * = BI,, + VV'

*ldea 3-1: TounifyUandVasE=U=V
* |n this way, we make one embedding matrix E

08/17/2022 Jaemin Yoo (CMU)
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Idea 3: Stable Inference (2/3)

* Obs. 3-2: Stochastic sampling is unstable
* Previous works sample Z in a stochastic way
« They sample z; ~ q;(Z; ¢) independently for each i

* Not effective if we consider the correlations of Z
« We need to sample Z simultaneously for all nodes
« The space of sampling is exponential with # of nodes

08/17/2022 Jaemin Yoo (CMU)
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Idea 3: Stable Inference (3/3)

* Idea 3-2: We generate deterministic Z from E
- This is equivalent to using Z = argmaxz, q4(Z’)

 Advantages

« We greatly improve the stability of inference
» We can still utilize the Dy, regularizer on g4 (Z)

Dual encoders Stochastic sampling Unified encoder Deterministic generation
& ) { e —— . & : iy I E :Z """""""
fu = U > ----- > Z f > > Z :
@ | ~A\— fresanoeeanes () E s "
f, > v H—oi | N(U,I) —> D u N(E, %) D
— |} ; 9
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Summary of Main ldeas

* We propose Idea 1 to model correlations
* By modeling GMREF prior of latent variables

* We propose Idea 2 and 3 to improve efficiency
* Low-rank approx. and deterministic inference

* They result in our objective function [(0):

z L(R;,x;) + 2 Ly, yi) + A(tr(Z'KZ) — alog|l + B2 Z])

LEVy (€D,
| J \

Error for X Error fory Proposed regularizer lgmrr
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Proposed Architecture

* We propose SVGA for feature estimation

 Structured Variational Graph Autoencoder

 GNN-based autoencoder for dual estimation
 GNN encoder generates latent variables Z

- MLP decoders make estimations X and §

GNN

Encoder

Identity features I
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Encoder and Decoders

« Graph convolutional network as f

« Make an identity matrix I € R™" as an input
 Allows f to learn independent embeddings for nodes

* Multilayer perceptrons as g, and g,
« Estimate features and (optionally) labels, resp.

¥

¥

GNN

Encoder

Identity features I
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Objective Function

* We minimize our objective function [(0)
* I, and l,, are reconstruction errors for X and y

* lcMmrr 1S our proposed regularizer for Z

[(0) = ) Le(%ix;) + ZV ly(§3¥i) + Momre (Z, A),
1€Vy

1€Vy
/ GMRF\
—
GNN I\
/ \
Encoder \/]\ ﬂ\ -/

Identity features I
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Experimental Setup

* We compare SVGA with various models:
* VAE, GCN, GAT, GraphRNA, ARWMF, SAT, etc.

* We use eight public graphs datasets

Dataset Type Nodes Edges Feat. Classes
Cora!l Binary 2,708 5,429 1,433 7
Citeseer! Binary 3,327 4,732 3,703 6
Photo? Binary 7,650 119,081 745 8
Computers? Binary 13,752 245,861 767 10
Steam® Binary 9,944 266,981 352 1
Pubmed! Continuous 19,717 44,324 500 3
Coauthor? Continuous 18,333 81,894 6,805 15
Arxiv? Continuous | 169,343 1,157,799 128 40

08/17/2022 Jaemin Yoo (CMU)



Experimental Results (1/4)

 Feature estimation
* Q1. How accurate is SVGA in feature estimation?

« A1. SVGA performs best in two types of features

 Binary and continuous features
« We use two evaluation metrics for each type

Binary features Continuous features
Cora Citeseer Pubmed Coauthor Arxiv
i Model

Metric | Model @10 @20 @50 | @10 @20 @50 ode RMSE CORR | RMSE CORR | RMSE CORR
NelghAgg .0906 1413 1961 0511 .0908 1501 NelghAgg 0.0186 -0.2133 0.0952 -0.2279 0.1291 -0.4943

VAE 0887 1228 2116 | 0382 .0668 .1296 VAE 0.0170 -0.0236 | 0.0863 -0.0237 | 0.1091 -0.4773

GNN* 1350 1812 2972 | 0620 1097 2058 GNN* 0.0168 -0.0010 | 0.0850 0.0179 | 0.1091  0.0283
GraphRNA | .1395  .2043 3142 0777 1272 2271 GraphRNA | 0.0172 -0.0352 | 0.0897 -0.1052 | 0.1131 -0.0419

Recall ARWMF 1291  .1813 2960 | .0552 .1015 .1952 ARWMF 0.0165 0.0434 | 0.0827 0.0710 | o.o.m. o.0.m.
SAT 1653 .2345 3612 | .0811 .1349 2431 SAT 0.0165 0.0378 | 0.0820 0.0958 | 0.1055 0.0868

| SVGA | 1718 .2486 .3814 | .0943 .1539 .2782 SVGA | 0.0158 0.1169 | 0.0798 0.1488 | 0.1005 0.1666

08/17/2022 Jaemin Yoo (CMU)
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Experimental Results (2/4)

 Node classification

* Q2. Does SVGA help node classification?

« A2. SVGA works best with 2 different classifiers

« We train a classifier based on generated features
« SVGA outperforms baselines with both MLP and GCN

Model Cora Citeseer Computers Photo Pubmed
MLP GCN | MLP GCN | MLP GCN | MLP GCN | MLP GCN
NeighAgg .6248 .8365 .5150 .6494 .8715 .6564 .5549 .8846 .7562 .5413
VAE .2826 3747 .4008 3011 4023 .4007 .2551 .2598 2317 .2663
GNN* .4852 3747 .4013 5779 4034 4203 .3933 .2598 2317 4278
GraphRNA .7581 .6968 .6035 .8198 .8650 8172 .6320 .8407 7710 .6394
ARWMF 7769 .5608 .6180 .8205 .7400 .8089 .2267 4675 .2320 .2764
SAT .7937 .8201 4618 .8579 .8766 .7439 .6475 .8976 7672 .6767
SVGA (proposed) | 8493 .8806 | .6227 .8533 | 8854 .8808 | .6757 .9209 | .8293 .6879

08/17/2022
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Experimental Results (3/4)

 Observation of labels

* Q3. Do observed labels help feature estimation?

« A3. They improve the accuracy of estimation
« The dual estimation is effective for learning better Z

[—.— SVGA (proposed) —-== SAT (baseline)]
0.25 1 0.109 './."/'/.
o o
— —
© © i
© 0.24 _./././'/. o 0.107
O O
a a
C C
g g 0.105
F 0.23 A =
————————————————— 0.103] =======—=-—————m-
0 0.25 0.5 0.75 1 0 0.25 05 0.75 1
Ratio of observed labels Ratio of observed labels
(a) Cora (b) Computers
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Experimental Results (4/4)

« Scalability
* Q4. How does running time scale with graph size?

* A4. It increases linearly with # of edges
« The running time is instant even for large graphs

(o))
o
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(%]

‘GE)’ —S— Arxiv
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ﬁ -~ Computers
e —— Steam

g 20 - —>¢ Photo

Q

C
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Conclusion

* We propose SVGA for feature estimation

* The main ideas are summarized as follows:

* Idea 1: GMREF prior of latent variables
* Idea 2: Low-rank approximation of the covariance

* ldea 3: Unified and deterministic inference

* We achieve SOTA accuracy in 8 real graphs
* |[n estimation of binary and continuous features
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Thank You!

Jaemin Yoo
Homepage: hitps://[aeminyoo.github.io
GitHub: https://github.com/snudatalab/SVGA
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