

Knowledge Extraction with No Observable Data

Jaemin Yoo, Minyong Cho, Taebum Kim, and U Kang Data Mining Lab. Seoul National University

NeurIPS 2019

Jaemin Yoo (SNU)

Outline

Introduction

- Proposed Approach
- Experimental Settings
- Experimental Results
- Conclusion

Model's Knowledge

- Consider an ML model in supervised learning
 - Trained for a dataset $\{(x_i, y_i) | i = 1, 2, ...\}$
 - Learned p(y|x) of a label y given a feature x
- It must have some knowledge about the data
 - □ How much labels y_1 and y_2 are related
 - How much x is close to y_1 than to y_2
 - How much x_1 and x_2 are close to each other

...

Knowledge Distillation

- To transfer a model's knowledge to another
 - Given a trained (teacher) model M_1
 - Given a target (student) model M_2
 - □ Feed a feature vector x_i to produce $\hat{y}_i = M_1(x_i)$
 - □ Train M_2 using \hat{y}_i as labels instead of true y_i
- Why does it work?
 - \bigcirc \hat{y} contains richer information than one-hot y
 - \hat{y} represents the knowledge of M_1 to be transferred

Knowledge without Data

- What happens when there are no data?
- Knowledge cannot be distilled
 - We cannot feed feature vectors to M_1
 - We cannot generate predictions of M_1
- We have no ideas about M₁'s knowledge
- The solution is knowledge extraction!

Estimating Data

Given

• A trained model M which maps x to y

Estimate

• The unknown distribution p(x) of data points

Such that

 \square p(x) is useful for distilling *M*'s knowledge

Knowledge Extraction

Given

• A trained model M which maps x to y

Generate

• A set $\mathcal{D} = \{(x_i, y_i) | i = 1, 2, ...\}$ of artificial data

Such that

- Every y_i is a (one-hot or soft) label vector
- Every x_i has a high conditional probability $p(x_i|y_i)$
- \square \mathcal{D} is useful for distilling *M*'s knowledge

- What does exacted knowledge look like?
- We are given a pre-trained ResNet14
 - Trained for the SVHN dataset of street digit images
- Our model generates the following images:

10		CAN I	in the	四	iles.	10	T	SE .	-
	i shi	19.14	nie.	4	uic.	(iii)	7	No.	STA .
0	ALC: N	24	172	Ŧ	Ur.	ST -	17	æ.	The
		- NIL		1	No.	6	T	1	8
		2	3	4	Sim	1	17	1×	9

Outline

Introduction

Proposed Approach

- Experimental Settings
- Experimental Results
- Conclusion

Overall Structure

KegNet (Knowledge Extraction with Generative Networks)
 Consists of three types of neural networks
 Generator, *classifier*, and *decoder* networks

Motivation (1)

- We introduce a latent variable $z \in \mathbb{R}^d$
- Our objective is to generate a dataset ${\cal D}$

$$\mathcal{D} = \left\{ \operatorname{argmax}_{\hat{x}} p(\hat{x} | \hat{y}, \hat{z}) \mid \hat{y} \sim \hat{p}_{y}(y) \text{ and } \hat{z} \sim p_{z}(z) \right\}$$

 $\square \hat{p}_y$ and p_z are proposed distributions for \hat{y} and z

Motivation (2)

We approximate the argmax function as

 $\operatorname{argmax}_{\hat{x}} p(\hat{x}|\hat{y}, \hat{z}) \approx \operatorname{argmax}_{\hat{x}} (\log p(\hat{y}|\hat{x}) + \log p(\hat{z}|\hat{x}))$

- Then, our model can be optimized as
 - □ Sampling \hat{y} and \hat{z} from \hat{p}_y and p_z , resp.
 - Generating \hat{x} from sampled \hat{y} and \hat{z}
 - Reconstructing \hat{y} from \hat{x} (max. $p(\hat{y}|\hat{x})$)
 - Reconstructing \hat{z} from \hat{x} (max. $p(\hat{z}|\hat{x})$)

Training Process in Detail

- Sample \hat{y} and \hat{z} from simple distributions
- Convert variables by deep neural networks
 - □ Generator (to learn): $(\hat{y}, \hat{z}) \rightarrow \hat{x}$
 - □ **Decoder** (to learn): $\hat{x} \rightarrow \bar{z}$
 - Classifier (given and fixed): $\hat{x} \rightarrow \bar{y}$
- Train all networks my minimizing two losses
 - Classifier loss: the distance $\hat{y} \leftrightarrow \bar{y}$
 - **Decoder loss**: the distance $\hat{z} \leftrightarrow \bar{z}$

Sampling Variables

- Remember that we have no observable data
- We sample \hat{y} and \hat{z} from distributions \hat{p}_y and p_z
 - Categorical and Gaussian distributions, resp.

Generator Network

- A generator network generates \hat{x} from \hat{y} and \hat{z}
- Its structure is based on DCGAN and ACGAN
 - Transposed convolutional layers and dense layers

Classifier Network

- The given network works here as evidence
- It reconstructs given \hat{y} based on its knowledge
 - This part is fixed (although it passes back-props)

Jaemin Yoo (SNU)

Decoder Network

- A decoder network extracts given \hat{z} from \hat{x}
- Its structure is a simple multilayer perceptron
 It solves the regression problem which is difficult

Reconstruction Losses

Two reconstruction losses: ŷ ↔ ȳ and ẑ ↔ z̄
 Loss for y: cross entropy between probabilities
 Loss for z: Euclidean distance between vectors

Data Diversity

- One problem exists in the current structure
 - The generated data have insufficient diversity!
- Diversity of data is important to our problem
 The model should distill its knowledge to others
 The dataset should cover a large data space
 It will activate many combinations of neurons

Diversity Loss

• In each batch \mathcal{B} , we calculate a new loss

$$l_{\text{div}}(\mathcal{B}) = \exp\left(-\sum_{(\hat{z}_1, \hat{x}_1)} \sum_{(\hat{z}_2, \hat{x}_2)} \|\hat{z}_1 - \hat{z}_2\| \cdot d(\hat{x}_1, \hat{x}_2)\right)$$

- □ $d(\cdot)$ is a distance function between two *x*'s
- Includes distances between all pairs of x's
 - □ But, it is multiplied by $\|\hat{z}_1 \hat{z}_2\|$
 - When z's are distant, then x's should be distant too

Overall Loss Function

The overall loss function is given as follows:

$$l(\mathcal{B}) = \sum_{(\hat{y},\hat{z})} \left(l_{\text{cls}}(\hat{y},\hat{z}) + \alpha l_{\text{dec}}(\hat{y},\hat{z}) \right) + \beta l_{\text{div}}(\mathcal{B})$$

- l_{cls} denotes the classification loss
- \Box l_{dec} denotes the decoder loss
- α and β are hyperparameters adjusting the balance

Outline

- Introduction
- Proposed Approach
- Experimental Settings
- Experimental Results
- Conclusion

Evaluation

- We apply our model to model compression
 The problem of reducing the size of a network
- **Given** a trained model *M*
- **Return** a compressed model *S*
 - \Box S has fewer parameters than M has
 - \Box S shows comparable accuracy to that of M

Tucker Decomposition

- Use Tucker decomposition for compression
 - Factorizes a large tensor into low-rank tensors
 - Has been applied to compress CNNs or RNNs
- Compression by Tucker
 - Initialize a new network with decomposed weights
 - Fine-tune the new network with training data

Baseline Approaches

- In our case, we modify the fine-tuning step
 Because we have no training data available
- We propose three baseline approaches
 Tucker (T) does not fine-tune at all
 - **T+Uniform** estimates p_x as the uniform dist.
 - **T+Normal** estimates p_x as the normal dist.
- KegNet uses artificial data in fine-tuning
 - 5 generators are trained to produce data

Datasets

- We use two kinds of datasets in experiments
 - Unstructured datasets from the UCI repo.
 - Famous image datasets for classification

Dataset	Features	Labels	Training	Valid.	Test	Properties
Shuttle	8	7	38,062	5,438	14,500	Unstructured
PenDigits	16	10	6,557	937	3,498	Unstructured
Letter	16	26	14,000	2,000	4,000	Unstructured
MNIST	$1 \times 28 \times 28$	10	55,000	5,000	10,000	Grayscale images
Fashion MNIST	$1 \times 28 \times 28$	10	55,000	5,000	10,000	Grayscale images
SVHN	$3 \times 32 \times 32$	10	68,257	5,000	26,032	RGB images

Target Classifiers

- We use classifiers according to the datasets
 - These classifiers are our targets of compression
- Unstructured datasets
 - Multilayer perceptrons of 10 layers
 - 128 units, ELU activations and dropouts
- Image datasets
 - LeNet5 for MNIST
 - ResNet14 for Fashion MNIST and SVHN

Outline

Introduction

- Proposed Approach
- Experimental Settings

Experimental Results

Conclusion

Summary

- Three ways of experiments are done
- Quantitative results
 - Done for the unstructured & image datasets
 - Compare accuracy and compression ratios
- Qualitative results
 - Done for the image datasets
 - Visualize generated data changing \hat{y} and \hat{z}

Quantitative Results (1)

- KegNet outperforms the baselines consistently
- The compression ratios are between 4× and 8×
- T+Gaussian works relatively well
 - Because the features are already standardized
 - Even a Gaussian covers most of the feature space

Model	Approach	Shuttle	Pendigits	Letter
MLP MLP	Original Tucker (T)	99.83% 75.49% (8.17×)	96.56% 26.44% (8.07×)	95.63% 31.40% (4.13×)
MLP MLP MLP	T+Uniform T+Gaussian T+ KEGNET	$\begin{array}{c} 93.83 \pm 0.13\% \\ 94.00 \pm 0.06\% \\ \textbf{94.21} \pm \textbf{0.03\%} \end{array}$	$\begin{array}{c} 80.21 \pm 0.98\% \\ 78.22 \pm 1.74\% \\ \textbf{82.62} \pm \textbf{1.05\%} \end{array}$	$62.50 \pm 0.90\%$ $76.80 \pm 1.84\%$ $77.73 \pm 0.33\%$

Quantitative Results (2)

Results are much better in the image datasets

Dataset	Model	Approach	Student 1	Student 2	Student 3
MNIST	LeNet5	Original	98.90%	98.90%	98.90%
MNIST	LeNet5	Tucker (T)	85.18% (3.62×)	67.35% (4.10×)	50.01% (4.49×)
MNIST MNIST MNIST	LeNet5 LeNet5 LeNet5	T+Uniform T+Gaussian T+ KEGNET	$\begin{array}{c} 95.48 \pm 0.11\% \\ 95.45 \pm 0.15\% \\ \textbf{96.32} \pm \textbf{0.05\%} \end{array}$	$\begin{array}{c} 88.27 \pm 0.07\% \\ 87.70 \pm 0.12\% \\ \textbf{90.89} \pm \textbf{0.11\%} \end{array}$	$\begin{array}{c} 69.89 \pm 0.28\% \\ 71.76 \pm 0.18\% \\ \textbf{89.94} \pm \textbf{0.08\%} \end{array}$
SVHN	ResNet14	Original	93.23%	93.23%	93.23%
SVHN	ResNet14	Tucker (T)	19.31% (1.44×)	11.02% (1.65×)	11.07% (3.36×)
SVHN SVHN SVHN	ResNet14 ResNet14 ResNet14	T+Uniform T+Gaussian T+ KEGNET	$\begin{array}{c} 33.08 \pm 1.47\% \\ 26.58 \pm 1.61\% \\ \textbf{69.89} \pm \textbf{1.24\%} \end{array}$	$\begin{array}{c} 63.08 \pm 1.77\% \\ 60.22 \pm 4.17\% \\ \textbf{87.26} \pm \textbf{0.46\%} \end{array}$	$\begin{array}{c} 23.83 \pm 1.86\% \\ 21.49 \pm 2.96\% \\ \textbf{63.40} \pm \textbf{1.80\%} \end{array}$
Fashion	ResNet14	Original	92.50%	92.50%	92.50%
Fashion	ResNet14	Tucker (T)	65.09% (1.40×)	75.80% (1.58×)	46.55% (2.90×)
Fashion	ResNet14	T+Uniform	< 65.09%	< 75.80%	< 46.55%
Fashion	ResNet14	T+Gaussian	< 65.09%	< 75.80%	< 46.55%
Fashion	ResNet14	T+ KEGNET	85.23 ± 1.36 %	87.80 ± 0.31 %	79.95 ± 1.36%

Quantitative Results (3)

- Two main observations from the results
- Large improvements in complicated datasets
 - MNIST < Fashion MNIST < SVHN</p>
 - Competitors even can decrease the accuracy
 - Because the manifolds are difficult to capture
- Large improvements in high compression rates
 Because they require better samples

Qualitative Results (1)

- Generated images contain recognizable digits
- SVHN looks more clear than MNIST
 - Because the manifold of SVHN is more predictable
 The digits of MNIST are more diverse (handwritten)

Qualitative Results (2)

- The variable z gives randomness to images
 - The images seem noisy when z = 0
 - $\hfill\square$ The images seem organized when averaged by z
- The 5 generators have different properties

Qualitative Results (3)

Our generator can take soft distributions of ŷ
 We change ŷ from 0 to 5 to see the differences
 The amount of evidence changes slowly
 An image becomes like 5 from a certain point

Outline

Introduction

- Proposed Approach
- Experimental Settings
- Experimental Results
- Conclusion

Conclusion

- We propose KegNet for data-free distillation
 - Knowledge extraction with generative networks
 - It enables knowledge distillation even without data
- KegNet consists of three deep neural networks
 Classifier network which is given and fixed
 Generator network for generating artificial data
 - Decoder network for capturing latent variables
- KegNet outperforms all baselines significantly
 Experiments on unstructured and image datasets

Thank you !

https://github.com/snudatalab/KegNet

Jaemin Yoo (SNU)