DSV: An Alignment Validation Loss for Self-supervised Outlier Model Selection

Jaemin Yoo

KAIST jaemin@kaist.ac.kr Yue Zhao University of Southern California yzhao010@usc.edu **Lingxhao Zhao** Carnegie Mellon University lingxiao@cmu.edu

Leman Akoglu

Carnegie Mellon University lakoglu@andrew.cmu.edu

Overview

Motivation: How can we search hyperparameters for self-supervised anomaly detection (SSAD)?

Why is it difficult? No labels are given at training

- \rightarrow No validation data can be used for HP search
- \rightarrow Unsupervised model selection problem

Proposed method: DSV

Validation loss for unsupervised model selection Focus on HPs in a data augmentation function E.g., the patch size in CutOut

Proposed Method

Discordance: The distance between ℓ and $Z_{\text{test}}^{(a)}$ **Separability:** The dist. between Z_{trn} and $Z_{\text{test}}^{(a)}$ on ℓ

Surrogate losses:

$$\mathcal{L}_{\text{dis}} = \frac{d(\mathcal{Z}_{\text{trn}} \cup \mathcal{Z}_{\text{aug}}, \mathcal{Z}_{\text{test}})}{d(\mathcal{Z}_{\text{trn}}, \mathcal{Z}_{\text{aug}})} \qquad \mathcal{L}_{\text{sep}} = \frac{\text{std}(\text{proj}(\mathcal{Z}_{\text{test}}))}{d(\mathcal{Z}_{\text{trn}}, \mathcal{Z}_{\text{aug}})}$$

Simplified final loss: $\mathcal{L}_{DSV} = \mathcal{L}_{dis} - \mathcal{L}_{sep}$ / \mathcal{L}_{dis}

Problem Definition

Problem: Unsupervised model selection for SSAD

Given

- 1. Data augmentation function f_{aug}
- 2. Set Φ of different detector models that are trained with f_{aug} with different HPs
- 3. Training data \mathcal{D}_{trn} (w/o labels)
- 4. Test data \mathcal{D}_{test} (as a transductive setting)

Find

Detector $\phi^* \in \Phi$ with best accuracy on $\mathcal{D}_{\text{test}}$

Main Ideas

Proposition: Functional alignment

Let f_{gen} be the anomaly-generating function Detector ϕ will be accurate if it is trained with f_{aug} that is aligned w/ f_{gen}

Q: How can we define the alignment? Idea 1: Compute the embedding distance btw. data augmented by $f_{aug}(\mathcal{D}_{trn})$ and true anomalies in \mathcal{D}_{test}

Experiments

Task: Industrial image anomaly detection
Detector: ResNet18-based classifier model
Trained to minimize the cross entropy between normal and augmented data
Augmentation functions: CutOut, CutPaste, etc.

Q: We don't know which are the true anomalies... Idea 2: Use \mathcal{D}_{test} as a whole, not only anomalies, comparing $\mathcal{D}_{trn} \cup \mathcal{D}_{aug}$ and \mathcal{D}_{test}

Steps for Approximation

Step 1: Decompose alignment into two terms: **Discordance** h_d and **Separability** h_s

Step 2: Design approximate **surrogate losses** $h_d \rightarrow \mathcal{L}_{dis}$ and $h_s \rightarrow \mathcal{L}_{sep}$

Step 3: Propose the DSV loss w/ \mathcal{L}_{dis} and \mathcal{L}_{sep}

Target HPs: Patch size of augmentation

$f_{ m aug}$	Avg.	Rand.	Base	MMD	STD	MC	SEL	HITS	DSV
CutOut	0.739	0.776	0.741	0.735	0.739	0.749	0.727	0.757	0.813
CutAvg	0.739	0.817	0.721	0.692	0.745	0.751	0.744	0.742	<u>0.806</u>
$\operatorname{CutDiff}$	0.743	0.711	0.739	0.730	0.744	0.747	0.741	0.777	0.811
CutPaste	0.788	0.841	0.694	0.756	0.818	0.862	0.830	0.850	0.884

