Sampling Subgraphs with Guaranteed Treewidth for Accurate and Efficient Graphical Inference
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OVERVIEW PROPOSED APPROACH

* @Given a large real-world graph G = (V,E) Bounded Treewidth Sampling (BTW)

* Problem: to sample a subgraph U = (V, E") such * Bounds the treewidth of subgraphs with k
that E' € E, which preserves the properties of G °

* Main idea: to bound the treewidth of U to k .

* Source codes: https://datalab.snu.ac.kr/btw

Maintains a k-tree K during a sampling process
Use a score function m for sampling edges
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* Exponential complexity with treewidth(()
° Treewidth: how much G resembles a tree
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Step 1: Initialization
* Given a graph G, BTW generate two graphs
* Asubgraph Uy, having k + 1 nodes

Research Motivation

 Can we sample subgraphs with bounded TW?
* JT on the subgraphs - accurate classification
* LBP on the subgraphs — fast classification

* A k-tree K;,.1 which is a complete graph

Step 2: Incremental Updates
* Define a score function m(u, Cy,)
* uisanewnode,and Cy, is a k-clique in K, ¢

* Select (ug42, Cy) = argmax, ¢, m(u, Cy)

* Connect Uy, to Cy in both Uy and Kj 44

Experimental Setup
 Sample subgraphs using BTW (or others)

OATA MINING SEOUL
ABORATORY DNIVERSITY
EXPERIMENTS

* Divide the labels for the k-fold validation
 Run JT or LBP for node classification
 Datasets: 4 real graphs with 2 — 16 labels
* Evaluation: classification accuracy & time

Effects for Node Classification
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Comparison with Other Algorithms (by LBP)

Method | Wikipedia  CoRA PubMed PolBlogs
RE 35.3 £ 0.2 579 +03 61.83+04 75.8=%1.0
RNE 51.3 £ 0.3 652+02 71.1+£0.1 34.4+0.6
HYB 49.4 + 0.2 645 +02 698+03 334+04
RW 26.5 £ 2.7 430+ 1.7 565+12 652+34
RJ 36.6 £ 0.4 554 +03 63.2+£04 75.6x+0.5
FS 29.8 + 0.2 479 +£0.2 56205 724+0.3
FF 49.4 + 0.2 63.7+£03 628+04 798+0.9
BTW 6.1+05 686+03 748+04 86.6+0.9
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