Distributed Loopy Belief Propagation on Real-World Graphs

Saehan Jo Seoul National Univ. naheas@snu.ac.kr

Jaemin Yoo Seoul National Univ. jaeminyoo@snu.ac.kr

U Kang Seoul National Univ. ukang@snu.ac.kr

Summary

- Problem: Given large real-world graphs that do not fit in a single machine, how can we efficiently make inference on unobserved vertices?
- Base algorithm: Loopy Belief Propagation (LBP)

Challenges:

- Power-law degree distribution of real-world graphs
- Burdensome iterative computations
- High communication overhead
- Our Method: Distributed Loopy Belief Propagation (DLBP)
- Utilize correct convergence criterion for real-world graphs
- Carefully schedule the iterations to minimize data communication

Our Method

Distributed Loopy Belief Propagation (DLBP)

- Idea 1: Using "belief" as the convergence criterion
- Message convergence criterion does not guarantee on high-degree vertices (Lemma 1, 2):
- the convergence of beliefs
- the convergence of messages in the next iteration
- Belief convergence criterion guarantees regardless of the degree of a vertex (Lemma 3, 4):
- the convergence of beliefs
- the convergence of messages between two converged vertices

Idea 2: Skipping of converged vertices

Experimental Results:

- Mostly identical accuracies (less than 0.14% difference)
- Up to 10.7x faster than standard distributed LBP
- Codes and datasets: https://datalab.snu.ac.kr/dlbp

Base Algorithm

Loopy Belief Propagation

- Problem: Inference on probabilistic graphical models
- Algorithm: Propagates information by iterative message passing
- Input: Priors and edge potentials
- Output: Beliefs (or marginal probabilities) of all nodes

- Belief convergence criterion provides better reliability
- Advantages:
- Omits redundant computations
- Reduces the number of iterations until convergence

Idea 3: Hub-Oriented Scheduling

- **Objective:** Minimize the full data shuffling by reducing the number of super-steps until convergence
- Preprocessing Stage: Divide vertices into hubs (high-degree) and spokes (low-degree) using hub ratio k
- Main Stage: Iterate super-steps until convergence where a super-step

consists of

- example 1. Hub-to-Hub Iteration
- 2. Hub-to-Spoke Propagation
- 3. Spoke-to-Spoke Iteration
- 4. Spoke-to-Hub Propagation
- Advantages:
- Reduce the amount of shuffled data
- Lower time complexity

Our Contributions

• Algorithm: DLBP is a novel algorithm for LBP on a distributed environment, which solves the challenges associated with the power-law degree distribution of real-world graphs

Analysis:

- We provide a theoretical analysis of two different convergence criteria of LBP (message and belief)
- We analyze **DLBP** in terms of time complexity, space complexity, and the amount of shuffled data

Experiment:

- **DLBP** demonstrates up to 10.7x speed up on real-world graphs compared to standard distributed LBP
- **DLBP** shows near-linear scalability with the number of machines

Motivation

Question 1: Setting convergence criterion

Experiments

Real-world datasets

Name	# of nodes	# of edges	Description	
YahooWeb graphs	16,402,838	30,403,395	Hyperlink graph,	
	~174,577,088	~776,375,840	Principle submatrices	
Campaigns graph	23,191	877,729	Donation graph	
PubMed	19,717	88,651	Citation graph	
PolBlogs	1,224	16,716	Hyperlink graph	

(s)

Speed

- Up to 10.7x faster than standard distributed LBP (BP-E, BP-V)
- Up to 10.0x faster than distributed LBP on Hadoop (HA-LFP)

Label classification accuracy

– Is the convergence criterion based on messages appropriate for realworld graphs with high-degree vertices?

Question 2: Minimizing numerical computations

– How can we minimize the overall computations of messages and the total number of iterations until convergence?

Question 3: Minimizing network communication cost

 Real-world graphs are known to have highly-skewed degree distribution – With this property in mind, how can we partition a real-world graph and arrange the message computations to minimize the data communication between machines?

– Less than 0.14% accuracy difference of any two methods

Dataset	BP-E	BP-V	BP-ES	BP-VS	DLBP
Campaigns	89.36%	89.36%	89.31%	89.31%	89.31%
PolBlogs	95.62%	95.62%	95.62%	95.62%	95.62%
PubMed	82.56%	82.56%	82.79%	82.79%	82.56%

Machine scalability

 Shows near-scalability where DLBP gains 9.46x speed up as the number of machines increases from 1 to 16

