EDIT: Interpreting Ensemble Models via Compact
Soft Decision Trees

Jaemin Yoo
Seoul National University
Seoul, South Korea
jaeminyoo@snu.ac.kr

Abstract—Given feature-based data, how can we accurately
classify individual input and interpret the result of it? Ensemble
models are often the best choice in terms of accuracy when
dealing with feature-based datasets. However, interpreting the
decision made by the ensemble model for individual input seems
intractable. On the other hand, decision trees, although being
prone to overfit, are considered as the most interpretable in terms
of being able to trace the decision process of individual input.
In this work, we propose Ensemble to Distilled Tree (EDIT),
a novel distilling method that generates compact soft decision
trees from ensemble models. EDIT exploits the interpretability
of a tree-based structure by removing redundant branches and
learning sparse weights, while enhancing accuracy by distilling
the knowledge of ensemble models such as random forests (RF).
Our experiments on eight datasets show that EDIT reduces the
number of parameters of an RF by 6.4 to 498.4 times with a
minor loss of classification accuracy.

Index Terms—interpretable learning, soft decision trees, ran-
dom forests, knowledge distillation, weight pruning

I. INTRODUCTION

Enabling interpretability, in addition to requirements for
high accuracy, is currently one of the essential tasks in the
machine learning and data mining community. Interpretable
machine learning methods enable humans to understand the
cause of a decision, allowing them to consistently predict the
model’s result [1,2]. Interpretability is especially important
for fields that require transparent and explainable predictions,
such as medical domains and policy-making domains.

However, there exists a tension between accuracy and inter-
pretability. Complex models such as deep neural networks and
ensemble models are highly accurate while being difficult to
interpret. On the other hand, intrinsically interpretable models
are often simpler models that generally have low accuracies,
such as linear models and decision trees.

How can we obtain predictions that are both accurate and in-
terpretable? Deep neural networks (DNN) are one of the most
studied models due to their high accuracy. There are several
works that target making DNN models more interpretable, as
surveyed in Montavon et al. [3]. However, DNN models are
not always applicable as they require a large amount of training
data and high computational power. Ensemble methods, on the
other hand, often show the highest performances without such
requirements. In fact, in an extensive study [4] of machine
learning methods on small to midsize datasets, random forests
(RF), which are representative ensemble models, had the best
performances in 50 out of 121 datasets.

Lee Sael
Ajou University
Suwon, South Korea
sael@ajou.ac.kr

TABLE I: Comparison of tree-based models.

Method DT RF SDT C-SDT
Accuracy Low High High High
Model complexity Low High Mid Low
Interpretability High Low Mid High

Ensemble models are inherently complex and their inter-
pretations are infeasible. Due to the limitation of DNNs and
increasing interests in the requirements for interpretability,
there have been several works on enhancing interpretability of
ensemble models [5]-[7]. However, many of these models are
limited to tree ensemble models, utilizing internal structures
and similarities of the ensemble of trees to extract, prune,
select, and summarize rules [7, 8].

In this work, we propose Ensemble to Distilled Tree
(EDIT), an algorithm to distill the knowledge of an ensemble
model to generate interpretable compact soft decision trees
(C-SDT), our novel variants of soft decision trees (SDT) [9].
We focus on the problem of interpreting a model’s decision
process for a given input and show how an ensemble model
can be distilled for better generalization accuracy of C-SDTs.
The proposed C-SDT improves the interpretability of SDTs by
allowing only a subset of input features to be involved in the
decision process at each node and by simplifying the model
structure by removing redundant branches.

Table I compares different tree-based models, including
C-SDTs that are generated by our approach. Decision trees
(DT) are one of the most interpretable models, but are easily
overfit and produce high generalization errors. RFs solve such
a problem and improve the accuracy significantly, but lose the
interpretability of DTs due to their ensemble structures: all of
their independent trees participate in every decision. An SDT
is between the DT and RF; it is based on a single tree and thus
more interpretable than the RF, but each internal node uses all
features in each decision. Our proposed C-SDT is based on
the structure of an SDT but learns a sparse weight vector for
each node and removes redundant nodes in the tree structure.
As a result, the complexity of a C-SDT is similar to that of a
DT, but the classification accuracy is much higher.

II. RELATED WORKS

We first describe related works of EDIT, which are catego-
rized into knowledge distillation and soft decision trees.

A. Knowledge Distillation

Knowledge distillation [10,11] is a class of mimic learning
approaches, which transfers the generalization ability of a
cumbersome teacher model into a small student model by
feeding the teacher’s input and output to the student. Given a
teacher network 7" and a student network .S, one feeds training
data to T" and uses its predictions instead of the true labels to
train S. As a result, S is trained by soft distributions rather
than one-hot vectors, learning latent relationships between the
labels that T" has already learned. Knowledge distillation has
been used for reducing the size of a model or training a model
with insufficient data [12, 13]. It has also been applied for
generating interpretable models from neural networks [9].

The idea of knowledge distillation is not restricted to neural
networks. Any classifier can transfer its learned knowledge to
a student model by giving its predictions as labels to train
the student. In our work, we demonstrate how knowledge
distillation can be applied to an ensemble model as a teacher
model to generate a tree-structured student model.

B. Soft Decision Trees

Soft decision trees (SDT) [9,14] are tree-structured machine
learning architectures that are based on soft decisions. The
internal nodes of an SDT are linear classifiers of input features,
and the leaves are values in bins where each bin is mapped to a
class. Given a depth d as a hyperparameter, an SDT initializes
a full binary tree of 24 leaf nodes, where every internal and
leaf node contains learnable parameters.

Each internal node computes the probability of passing an
input feature x to the right or the left branch. This is different
from a DT where a node chooses just a single branch. More
specifically, given a feature vector x, each internal node ¢
computes the probability p;(x) of taking the right branch:

pi(x) = o(x " w; + b)), (D

where w; and b; are learnable parameters of node ¢ and o is
the logistic sigmoid function. Since an SDT is a binary tree,
the probability of taking the left branch is 1—p;(x). The input
feature vector x is passed to the children in proportion to the
probabilities computed at the current node.

Each leaf node ¢ produces a probability distribution q; that
is learned over the training set:

q; = softmax(¢;), 2)

where ¢; is a parameter representing an unnormalized prob-
ability vector. This is also different from DTs because a leaf
node can produce a soft distribution for multiple classes.

The prediction of x is performed differently for training and
evaluation. For training, one calculates the weighted average
of predictions of all leaves by the arrival probabilities:

sdt(x) = Y ra(x) - qn, 3)
7L€Nd

where N is the set of all leaf nodes, and 7, is the arrival
probability for node n which sums to one if added for Nj.

The arrival probability r;(x) of node ¢ is computed as the
multiplication of all path probabilities from the root:

ri(x) = [Ils_left)(1 — pn(x)) + I(is_right)pn (x), 4)
nepP;

where P; is the set of nodes in the path between the root and
node ¢, and I is an indicator function that produces one if the
condition holds and zero otherwise.

The parameters of an SDT in all internal and leaf nodes are
updated by a gradient-based approach. It aims to minimize the
following loss function that is based on Equation (3):

%)= > ra(x) > yrlog g, S

nGNd key

where) is the set of possible labels, k is the index of a label,
and yy is the observed probability of x being categorized as
k, which is either 1 or 0. This is a weighted cross-entropy that
treats each leaf node as an independent classifier.

For the evaluation, only the most probable path is taken
instead of all possible paths. In other words, an SDT picks
the leaf node ¢ with the maximum arrival probability r;(x)
given a feature vector x, and returns its softmax distribution
q; as the prediction for x. The interpretation of the single
most probable path is more straightforward than interpreting
all possible paths for the prediction of each instance.

However, an SDT has limited interpretability even with its
linear structure when the tree depth or the number of features
is large. For instance, given a feature vector x of length |x|,
the explanation of a decision from an SDT of depth d involves
d(|x| + 1) + |y| parameters, because it has passed through d
linear classifiers with an additional leaf node. In this work, we
resolve this issue by EDIT, our proposed approach that learns
a compact SDT of pruned nodes and sparse weights.

III. PROPOSED APPROACH

We propose Ensemble to Distilled Tree (EDIT), a novel
distilling method that learns compact soft decision trees (C-
SDT) from a trained ensemble model. Our C-SDT is designed
to enhance the interpretability of a vanilla soft decision tree
(SDT) without decreasing its accuracy.

A. Overall Algorithm

Algorithm 1 describes EDIT, our proposed approach for
training an interpretable C-SDT. EDIT first generates a new
dataset Dy in line 1 by distilling the knowledge of a trained
ensemble model M, which is used in the following training
instead of the given dataset D;. EDIT initializes an SDT S in
line 2 and applies whether the weight masking in line 3 or the
weight pruning in line 11 to generate sparse weight vectors.
EDIT updates S iteratively in lines 4 to 10, pruning redundant
nodes in line 9 after consuming all training data at each epoch.
EDIT returns the resulting C-SDT when the training is done,
which is compact but produces high accuracy.

Although Algorithm 1 describes that S is updated at every
instance, the actual implementation of EDIT is based on the
batch learning: it divides the training data into small batches

Algorithm 1 Ensemble to Distilled Tree (EDIT)

Input: a pre-trained ensemble model M
Input: a training dataset D, and a validation dataset D,
Input: a weight sparsity ratio v and a pruning threshold e
Output: a compact soft decision tree (C-SDT) S
Dy {(x, (M(x) +)/2) | (x.y) € D1}/ Sec. 1B
S < initialize a soft decision tree (SDT)
S < weight masking with ratio v / optional; Sec. II1I-C
while the convergence criterion is not met do
for x, y in D; do
1(x) ¢ —log (X, n, (%) Xyey Yk 108 Gk)
S < update the parameters for decreasing /(x)
end for
S < prune nodes with threshold e
end while
S + weight pruning with ratio v // optional; Sec. 1II-C
return S

R A A S

// Sec. III-D

— — =
M e e

and updates the model for each mini-batch. We also use the
Adam optimizer [15] for updating the parameters because it
has been shown to work well with various machine learning
models. We use the early stopping method as the convergence
criterion in line 4; we stop the learning if the validation loss
does not decrease for m consecutive epochs. We set m to 40
in our experiments, but its value can be different.

B. Knowledge Distillation

Given a pre-trained ensemble model M which performs
well on given data, we use its predictions instead of the true
labels in D; when training our C-SDT model. We train the
model by minimizing the following loss function:

l(x) = —log < Z rn(x) Z M(x

neNy key

)i log an> (O]

where M (x) is the output of M when x is given.

Although knowledge distillation improves the generalizabil-
ity of the student model, it can be problematic if the teacher
gives incorrect predictions. In other words, the student model
may learn the wrong labeling. To alleviate the problem of the
teacher feeding wrong information to the student, we use the
average of a true label (one-hot vector) and a teacher-generated
label (soft distribution vector). This is done by replacing the
prediction M (x) in Equation (6) as (y+ M (x))/2, where y is
the observed label for the feature x. This approach is adopted
form the original suggestion by Hinton et al. [11] for distilling
the knowledge of a neural network.

C. Weight Sparsification

The vanilla SDT learns a linear classifier at each internal
node that considers all input features, i.e., a vanilla SDT is a
hierarchy of dense linear systems. It is well agreed that sparse
linear systems are more interpretable compared with dense
systems. Likewise, it is important to sparsify weights learned
in each internal node for achieving high interpretability. We
investigate three approaches for learning sparse weights.

1) LI Regularization: A widely used approach for learning
sparse weights is to add a sparse regularizer to the loss function
by calculating the L1 norm of each weight. The loss function
of a C-SDT with L1 regularization is as follows:

Ia () = 1(- “Z > (Iwalls + 1bal), (7)

i=0 neN;

where i is the index of a layer,)V is the set of nodes at the
i-th layer, and w,, and b,, are the weight and bias of node n,
respectively. Note that ¢ = 0 represents the root node, and we
do not include the leaves as it restricts the output space of the
C-SDT, severely decreasing its learning capacity.

A benefit of this approach is that sparsity can be obtained
naturally in a one-step process while optimizing for the loss
function. However, the ratio of sparsification and the accuracy
is highly dependent on the hyperparameter A, which must be
carefully tuned for each dataset. A wrong selection of A can
lead the model to either 1) little sparsification or 2) failure of
minimizing the target loss at all. Moreover, the sparsity ratio
cannot be controlled manually.

2) Weight Pruning: The second approach is weight prun-
ing, which is to remove redundant weights from a trained
model whose significance scores are smaller than a threshold
[16]-[18]. The score can be calculated based on the contri-
bution of the weight on the target loss [18] or simply be the
absolute value of the weight [16, 17]. We use the absolute
value of the weight as its score for simplicity.

More specifically, we take a three-step approach to weight
pruning. First, we train a model with dense weights. Second,
we prune the weights by sorting the elements of each weight
vector by their absolute values given a sparsity ratio 7. Thus,
we maintain the top y|w| elements of each weight vector w.
Finally, we fine-tune the pruned model with training data. A
benefit of this approach is that the sparsity and accuracy can be
balanced well by the value of ~, which we can control directly
unlike the L1 regularization. However, the added fine-tuning
step increases the complexity of training.

3) Weight Masking: The third approach is weight masking.
We multiply the whole weight matrix of all internal nodes with
a boolean mask generated randomly before the training begins.
Thus, only the activated elements are used in further training
and evaluation. This limits the performance of each node by
preventing it from using all features but leads eventually to a
robust tree that works well with fewer parameters.

Specifically, we generate the boolean mask by the element-
wise Bernoulli distribution of probability v, which represents
the sparsity ratio as in the weight pruning. We do not mask the
weights of leaf nodes because they represent final predictions.
A benefit of this approach is that it is applied before the
training begins and requires no separate fine-tuning. However,
because the features are inactivated at random, the model is
not able to learn a consistent decision process.

D. Tree Pruning

Even though tree structures are considered interpretable, in
reality, it is difficult to interpret a large tree. For example, it

[# EDT(pruning) @ EDT(maskingg v SDT © DT & RF|

=+ 100 &)

A gg] BEST $ BEST 48 ! o5 | BEST ;. g
goslofe ¥ § = 8 ¥ 3 99 . v g v
< < 861 < >
> > (€] > >
g o8 ° ¢ | fw
3 601 3 841 3 3
< < < 979 2

B SS-H
B 82 B
: ; ‘ . . . 968 ; ; 8 . :
103 104 10° 103 104 10° 10?2 103 104 102 103 104
Number of parameters Number of parameters Number of parameters Number of parameters
a C -
ABALONE b) MAGIC MUSK-2 d) OOCYTES
BEST ¥ BEST 2V ° 2% v) & v
< 3 8 = MR S c851%¢ ¥ ¢
8 o 270 v g S
>94] © > > >
) ° [9) [€) [9)
e e C 901 c 80
=1 =1 [m] =1 90 =1
3 92 5 651g] S
< < < < 75
908 ‘ ‘ . . 818 ‘ ‘ B . .
103 104 103 104 103 104 103 104

Number of parameters

(e) PENDIGITS

Number of parameters

(f) STATLOG

Number of parameters

(g) TWONORM

Number of parameters

(h) WAVEFORM

Fig. 1: Classification accuracy of EDIT and the baselines with respect to the number of parameters. For each algorithm, we
plot five results using different random seeds. ED1T(pruning) and ED1T(masking) are both located close to the best points at

the upper left corners in all datasets, showing the best balance between the accuracy and complexity.

requires looking at eight different binary classifiers following
the most probable path to interpret a prediction from an SDT
of depth 8. Thus, it is desirable to decrease the number of
nodes without affecting the classification accuracy.

Our free pruning is to prune the branches at which only a
few instances arrive during the training of .S. We first initialize
the weights of all internal nodes to zero, making S pass all
instances equally to all leaf nodes. We then update the weights
iteratively, increasing the bias for arrival probabilities to the
leaf nodes as well as internal nodes. Given a pruning threshold
€, we iteratively prune the nodes where the average of arrival
probabilities for the training data is less than e, decreasing the
number of active nodes at each iteration.

IV. EXPERIMENTAL SETTINGS

We introduce our experimental settings including datasets,
competitors, hyperparameters, and evaluation metrics. All our
experiments were done at a workstation with Intel Xeon ES5-
2630 v4 and GTX 1080 Ti. Our compact soft decision trees
(C-SDT) are implemented by the PyTorch [19] framework.

A. Datasets

We use eight datasets in the UCI Machine Learning Repos-
itory [20], which have various numbers of features, instances,
and labels. The datasets are first downloaded form the USC
website! that hosts preprocessed datasets from the repository
[4,21]. After that, we divide each dataset randomly into the
7:1:2 ratios for training, validation, and testing. Then, each
dataset is z-transformed and scaled into zero-mean and unit-
variance. Table II summarizes the datasets.

Thttp://persoal.citius.usc.es/manuel fernandez.delgado/papers/jmlr/

TABLE II: Summary of datasets.'

Dataset Instances Features Labels
ABALONE 4,177 8 3
MAGIC 19,020 10 2
MUSK-2 6,598 166 2
OOCYTES 912 32 3
PENDIGITS 10,992 16 10
STATLOG 690 14 2
TWONORM 7,400 20 2
WAVEFORM 5,000 21 3

B. Competitors

We compare EDIT with various tree-based algorithms that
have been used widely for classification problems. The first
is a decision tree (DT) which supports high interpretability.
However, a DT is known to overfit easily to training data and
thus have a high generalization error. We use a random forest
(RF) as a strong competitor in terms of accuracy, which is a
representative ensemble approach whose performance is better
than that of a DT but with loss of interpretability. Lastly, we
use a soft decision tree (SDT) as our baseline method.

We use the implementations of scikit-learn [22] for DTs and
RFs with the default hyperparameters; we have checked that
changing them does not make a meaningful difference. One
exception is the number of trees in an RF which is crucial
for its classification performance and complexity. We set it to
100, because using more trees does not increase the accuracy
of RFs in our datasets, while using fewer trees decreases it
significantly. For SDTs, our PyTorch [19] implementation is
used with the same hyperparameters as in C-SDTs.

% EDiT(pruning) @ EDiT(masking) ¢ EDIT(L1) A EDiT(base) SDT
661BEST 4 4 © @ BEST v do v] 07T TR, 967BEST ¥
e @ A V| _ 861 s ® © _ e . # o A0
8 641 < S ° £ gole © Roal®
> o >, 841 > <@ >
06210 9 <o 9 9 °
e e * o Co2
2 60 ke 2 90 3
< < 804® < < 90 ° <o
58 1
T T 0 T T 0 T T T T
102 103 10? 103 102 103 102 103
Number of parameters Number of parameters Number of parameters Number of parameters
(a) ABALONE (b) MAGIC (c) MUSK-2 (d) OOCYTES
100 73.2%ex @
s %0 v ®9 BEST o 2 85 BES] o # 0,
—~ €] - P —
3 801 £73.0 g o5 ° Ss0{%e o
g 9 9 9
g 601 £728 g s £75
3 =1 = 90_ ° >
8 40l 8 g 8 701
< <726 < <
201 ____ ‘ < LX) 851%, ‘ 651 __ i ©
10? 103 6x10% 103 2x10° 102 103 102 103

Number of parameters Number of parameters

(e) PENDIGITS (f) STATLOG

Number of parameters Number of parameters

(g) TWONORM (h) WAVEFORM

Fig. 2: Classification accuracy of EDIT with various approaches to generate sparse weight matrices, with respect to the number
of parameters. ED1T(base) represents using only tree pruning and knowledge distillation without weight sparsification. EDIT
with weight pruning and masking perform generally well in most cases, while the L1 approach performs the worst.

C. Experimental Setup

We use an RF as our teacher model for knowledge distilla-
tion, because it shows a good performance in many datasets.
We set the depth d of all SDT-based models to 8, which was
also used in [9]. We set the threshold ¢ for tree pruning to
103 and the weight sparsity ratio v to 0.5 if not mentioned
otherwise. For training, we use the Adam optimizer [15] and
apply the early stopping; we stop the training if the validation
loss does not decrease for 40 consecutive epochs.

Since we focus on developing an interpretable model, it is
important to quantify the amount of interpretability. We count
the numbers of parameters of all internal nodes and add them
as an interpretability score of each model. We do not consider
the leaf nodes because they represent the output of a model.
For instance, each node in a DT represents one parameter as it
considers a single feature element. The number of parameters
of an RF is the sum of parameters for all its trees. Since an
SDT-based model considers multiple parameters at each node,
the number of parameters is likely to be larger than that of a
DT if they have the same depth.

V. EXPERIMENTAL RESULTS

In this section, we show experimental results of EDIT to
answer the following questions:

Q1) Does EDIT outperform the baselines in terms of classi-
fication accuracy and model complexity?

Q2) Which sparsification approach is the most effective for
generating sparse weight matrices?

Q3) How many nodes does tree pruning remove? How is the
accuracy affected by the tree pruning?

A. Accuracy and Complexity (Q1)

Figure 1 shows the classification accuracy of EDIT and the
baseline approaches with respect to the number of parameters.
We plot each method five times with different random seeds.
The points from EDIT are closest to the best points at the
upper left corners, especially when weight pruning is adopted,
representing that they produce high accuracy even with few
parameters. EDIT reduces the parameters of an SDT from 2.2
to 39.0 times, resulting in an efficient structure that contains
up to 498.4 times fewer parameters than in an RF.

Interestingly, in two of the eight datasets, EDIT produces
smaller models than even DTs. This is because DTs do not
bound the depth of a tree: its depth is 27 and 38 in ABALONE
and MAGIC, respectively, although the number of features in
both datasets is at most 10. On the other hand, our C-SDT
has a bounded depth, which is 8 in our experiments, and even
removes most of those nodes by tree pruning. Thus, C-SDTs
can be more lightweight than DTs even multiple features are
considered at each internal node.

The number of parameters in an SDT increases significantly
with the number of features since each internal node considers
all features. SDTs are more complex than RFs in MUSK-2,
where the number of features is very large. Weight sparsifi-
cation is effective especially in this case, since most of those
features are not used in the learned trees of a C-SDT.

B. Weight Sparsification (Q2)

We compare different approaches for weight sparsification
in Figure 2. The first three methods represent EDIT with three
different sparsification algorithms, and EDIT(base) represents

—e— Training accuracy —a— Number of nodes

Validation accuracy

86 L1500
(%]
— [}
R 841 1400 8
> Y
[6) o
C 82 @
3 1300 &
o €
“ 801 | 3
‘ £ 200
[]
784 ° , : , , ,
0 20 40 60 80 100

Fig. 3: Training process of EDIT for the MAGIC dataset. The
accuracy for both training and validation data improve, while
the number of active nodes is minimized.

using only tree pruning and knowledge distillation. We vary
the sparsity ratio v in {0.1,0.2,0.5} for the weight tying
and pruning approaches, and the regularization parameter A
in {1075,1074,1073,1072} for the L1-based approach.

As a result, weight masking and pruning generally perform
well in most datasets, showing the smallest numbers of pa-
rameters in all cases. The accuracy drop is negligible when
~ is set to 0.5, but it increases when smaller ~y is adopted. It
is shown that weight pruning reduces more parameters than
weight masking does when v = 0.1. This is because when
weight pruning is adopted, we first train a model only with
tree pruning and knowledge distillation and then sparsity the
weights; the weight matrices are dense in the initial training
and thus more branches can be removed by tree pruning.

Unlike the other approaches, the L1 approach has failed to
reduce enough parameters even when large X is adopted. This
is because large A prevents the model from searching enough
space and limits its capacity for solving the classification, due
to the regularizer added to the loss. On the other hand, weight
masking and pruning have no such problems. Weight pruning
gives the model a full chance of learning with dense weights
before the sparsification, and weight masking does not restrict
its search space once the boolean mask is determined.

C. Tree Pruning (Q3)

Since the tree pruning approach of EDIT removes active
nodes during the training, it is necessary to check whether it
affects the stability of the training or not. Figure 3 shows the
training process of EDIT for the MAGIC dataset when weight
masking is adopted for weight sparsification. The accuracy for
both training and validation data improve while we iterate the
training epochs, even though we remove many nodes; the half
of all nodes are removed after epoch 8, and the 2/3 after epoch
52. This is because we initialize all weights to zero; once a
node has a small arrival probability, it is safe to prune it since
it is redundant in terms of predictions.

VI. CONCLUSION

In this work, we propose Ensemble to Distilled Tree
(EDIT), an accurate and interpretable distilling method for

ensemble models that generates a compact soft decision tree
(C-SDT). With EDIT, a vanilla soft decision tree (SDT) is
improved in the perspective of interpretability and generaliz-
ability by our three techniques of a) knowledge distillation,
b) weight sparsification, and c) tree pruning. Our experiments
show that the resulting C-SDT trained by the knowledge of
random forests (RF) shows comparable accuracy to both the
RF and SDT, providing improved interpretability.

ACKNOWLEDGEMENT

This work was supported by the National Research
Foundation of Korea funded by the Ministry of Sci-
ence, ICT and Future Planning (2018R1A5A1060031,
2018R1A1A3A0407953). Lee Sael is the corresponding au-
thor.

REFERENCES

[1] B. Kim, R. Khanna, and O. Koyejo, “Examples are not enough, learn to
criticize! criticism for interpretability,” in NIPS, 2016, pp. 2288-2296.

[2] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, 2018.

[3] G. Montavon, W. Samek, and K.-r. Miiller, “Methods for interpreting
and understanding deep neural networks,” Digital Signal Processing,
vol. 73, pp. 1-15, 2018.

[4] M. F. Delgado, E. Cernadas, S. Barro, and D. G. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
JMLR, vol. 15, no. 1, pp. 3133-3181, 2014.

[5] G. Tolomei, F. Silvestri, A. Haines, and M. Lalmas, “Interpretable
predictions of tree-based ensembles via actionable feature tweaking,”
in KDD, 2017.

[6] Y. Zhou, Z. Zhou, and G. Hooker, “Approximation Trees: Statistical
Stability in Model Distillation,” no. 2012, pp. 1-30, 2018.

[7] S. Hara and K. Hayashi, “Making tree ensembles interpretable: A
bayesian model selection approach,” in AISTATS, 2018.

[8] H. Deng, “Interpreting Tree Ensembles with inTrees,” International
Journal of Data Science and Analytics, vol. 7, no. 4, pp. 277-287, 2014.

[9]1 N. Frosst and G. E. Hinton, “Distilling a neural network into a soft

decision tree,” in AI*IA 2017, 2017.

C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,”

in KDD, 2006.

G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a

neural network,” CoRR, vol. abs/1503.02531, 2015.

Y. Kim and A. M. Rush, “Sequence-level knowledge distillation,” in

EMNLP, 2016, pp. 1317-1327.

A. Polino, R. Pascanu, and D. Alistarh, “Model compression via

distillation and quantization,” in ICLR, 2018.

O. Irsoy, O. T. Yildiz, and E. Alpaydin, “A Soft Decision Tree,” in ICPR

2012, 2012, pp. 1819-1822.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

in ICLR, 2015.

M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy

of pruning for model compression,” in ICLR Workshop, 2018.

T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang, “A

systematic DNN weight pruning framework using alternating direction

method of multipliers,” in ECCV, 2018, pp. 191-207.

L. S. Moonjeong Park, Jun-Gi Jang, “VeST: Very Sparse Tucker Fac-

torization of Large-Scale Tensors,” in arXiv:1904.02603, 2019.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in

pytorch,” in NIPS (Workshop), 2017.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[Online]. Available: http://archive.ics.uci.edu/ml

M. Olson, A. J. Wyner, and R. Berk, “Modern neural networks generalize

on small data sets,” in NeurIPS, 2018, pp. 3623-3632.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
Plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

[10]
(11]
[12]
[13]
[14]
[15]
[16]

(171

(18]

[19]

(20]

[21]

