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Abstract—How can we classify graph-structured data only with
positive labels? Graph-based positive-unlabeled (PU) learning is
to train a binary classifier given only the positive labels when
the relationship between examples is given as a graph. The
problem is of great importance for various tasks such as detecting
malicious accounts in a social network, which are difficult to be
modeled by supervised learning when the true negative labels
are absent. Previous works for graph-based PU learning assume
that the prior distribution of positive nodes is known in advance,
which is not true in many real-world cases. In this work, we
propose GRAB (Graph-based Risk minimization with iterAtive
Belief propagation), a novel end-to-end approach for graph-based
PU learning that requires no class prior. GRAB models a given
graph as a Markov network and runs the marginalization and
update steps iteratively. The marginalization step estimates the
marginals of latent variables, while the update step trains a
classifier network utilizing the computed priors in the objective
function. Extensive experiments on five datasets show that GRAB
achieves state-of-the-art accuracy, even compared with previous
methods that are given the true prior.

Index Terms—PU learning, graph neural networks, loopy belief
propagation, Markov networks

I. INTRODUCTION

How can we classify graph-structured data only with posi-
tive labels? Positive-unlabeled (PU) learning [1] is to train a
binary classifier given only the positive labels when acquiring
true negative labels is very difficult or even not possible. Such
scenarios include detecting malicious users in a social network
service, which can behave like normal users to fool the labeler.
In this case, the problem is to find malicious accounts without
having concrete labels for normal accounts. PU learning has
been successfully applied to text [2] or image [3] data.

Classifying nodes in graph-structured data is a fundamental
problem of data mining [4]–[6]. The problem has drawn much
attention with the advancement of graph neural networks [7]–
[9], which learn effective low-dimensional representations of
nodes by considering feature vectors and the graph structure at
the same time. PU learning on graph data can advance existing
approaches for node classification by removing the assumption
on the observation of negative labels, enlarging the coverage
of applications toward challenging scenarios.

The main limitation of previous works [2], [10]–[13] for
graph-based PU learning is that the true class prior is assumed
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to be known as πp = P (Y = +1), where Y denotes the target
variable. This is not a realistic assumption in most cases, since
the exact value of πp cannot be found if no negative labels are
given. Another limitation is that previous approaches [2], [12]
rely on heuristics for selecting relatively positive nodes from
the unlabeled ones to assign pseudo labels, increasing the risk
of misclassification based on the result of selection.

In this work, we propose GRAB (Graph-based Risk mini-
mization with iterAtive Belief propagation), an iterative algo-
rithm for PU learning on graph-structured data. GRAB models
the given graph as a pairwise Markov network that represents
the probabilistic relationships between nodes. This enables us
to propagate a few positive observations to the entire graph
by a graphical inference with an approximate prior π̂p. The
estimated marginals work as approximate answers to train a
node classifier f , which is then used to improve the estimation
π̂p. Thus, each iteration of GRAB consists of a) the estimation
of approximate marginals of nodes given π̂p and b) the training
of a classifier f given the computed marginals, which is then
used to improve the quality of π̂p for the next iteration.

As a result, GRAB effectively addresses the limitations of
previous approaches. First, GRAB does not require the class
prior πp, since it estimates an approximate prior π̂p during the
iterative process. Second, GRAB does not rely on heuristics
for selecting relatively positive nodes, because the estimated
marginals of unlabeled nodes become the answers of training
the classifier f . Each unlabeled node is treated softly as both
positive and negative based on its estimated marginal, and it
provides rich soft labels for the effective training of f .

Our contributions are summarized as follows:

• Method. We propose GRAB, an accurate approach for
PU learning on graph data. GRAB is prior-agnostic, i.e.,
it does not require to know the true prior πp, which is not
observable in real-world scenarios. We show that GRAB
successfully estimates unknown πp via iterations.

• Theory. We provide theoretical analysis on the properties
of GRAB, including the relation to the EM algorithm, and
the time and space complexities.

• Experiments. We perform extensive experiments on real-
world datasets. GRAB shows the best performance in all
datasets, even when all baselines fail to make meaningful
prediction due to the limited observations as in Fig. 1.
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Fig. 1: The F1 scores of GRAB and the baseline approaches for graph-based PU learning. We change the ratio rp of observed
positive nodes among all positive ones; the problem is more difficult with smaller rp. GRAB shows high F1 scores with all
values of rp while all competitors fail at performing meaningful classification. This indicates the robustness of GRAB even in
imbalanced PU learning scenarios, where the number of observations is much smaller than the number of all nodes.

TABLE I: Symbols.

Symbol Description

G Undirected graph consisting of V and E
V, E Sets of all nodes and edges, respectively
P Set of labeled positive nodes
U Set of unlabeled nodes that we aim to classify

X Feature matrix for all nodes in G
y Label vector for the labeled nodes in P
B Belief matrix of nodes
πp (Unknown) class prior
π̂p Estimation of unknown πp

f(·) Classifier network with parameters θ
ŷi(u) Prediction of f for node i being labeled as u
L̃(·) Objective function that GRAB aims to minimize

The rest of this paper is organized as follows. In Section
II, we introduce related works on graph-based PU learning. In
Section III, we propose GRAB with its theoretical properties.
We introduce our experimental setup in Section IV and show
experimental results on real-world datasets in Section V. We
conclude at Section VI.

II. RELATED WORKS

We present the definition of graph-based PU learning and
introduce related works. Table I summarizes the symbols used
in this paper.

A. Graph-Based PU Learning

PU learning is to train a binary classifier given only positive
and unlabeled examples [14]–[16]. A promising approach to
solve the problem is to utilize the relations between examples,
assigning pseudo labels to the unlabeled ones for the training
of a classifier. Thus, the problem can be solved more easily if
the relations between examples are given explicitly as a graph.
We define graph-based PU learning as follows.

Problem 1 (Graph-based PU learning). We are given an undi-
rected graph G = (V, E) and a feature matrix X ∈ R|V|×d,
where V and E are the sets of nodes and edges, respectively,
and d is the number of features. We know only a fraction of all

positive nodes as a set P . The other nodes V\P are unlabeled
and represented as a set U . Given G, X, and P , the goal of
graph-based PU learning is to train a binary classifier f that
accurately predicts the unknown labels of U .

PE-PUC [11] and PU-LP [12] find relatively positive ex-
amples from U based on the graphical structure, treating the
remaining examples as (relatively) negative. This changes the
problem into positive-negative (PN) learning where a typical
binary classifier can be used directly. The limitation is that the
overall performance highly depends on the way to select such
examples, which is based on heuristics.

PULD [10] and puNet [2] find the labels of unlabeled ex-
amples by solving optimization problems with latent variables.
Such approaches naturally incorporate the graph information
and feature vectors in a single optimization problem without
separate steps such as in [11], [12]. However, they assume the
linear relationships between variables and between examples
in the graph, which is not true in many cases.

LSDAN [13] is a graph neural network (GNN)-based model
that considers both long- and short-distance relations between
nodes to improve the performance of PU learning. The limita-
tion is that heavy computation is required for generating An

to consider long-distance relations, where A is the adjacency
matrix of a graph, which becomes intractable in large graphs
or when the target distance n is large.

The existing approaches require the exact prior πp, which
is not available in real-world scenarios of PU learning. We
address the limitation by designing an iterative approach for
estimating the unknown prior based on the graphical structure
and feature vectors of nodes. At the same time, GRAB does
not select relatively positive nodes by heuristics, as it assigns
continuous marginals to the unlabeled nodes by the graphical
inference, providing richer evidence for the training.

B. Unbiased Risk Estimators
Unbiased risk estimators [17], [18] are objective functions

specifically designed for PU learning. The idea is utilizing the
following equality to address the absence of negative data:

(1− πp)R̂−n (f) = R̂−u (f)− πpR̂−p (f), (1)



where πp is the class prior P (Y = +1) of unlabeled nodes
being labeled as positive, f is a classifier, and R̂−n (f), R̂−u (f),
and R̂−p (f) are the risk terms for the negative, unlabeled, and
positive nodes, respectively, of classifying them as negative by
f . The hat sign represents that a risk is calculated empirically
from the given data, instead of random variables. Equation (1)
represents R̂−n (f), which is unknown in PU learning, by the
known risks R̂−u (f) and R̂−p (f).

Kiryo et al. [3] proposed the non-negative risk estimator to
prevent the unbiased risk estimator from going negative:

R̂pu(f) = πpR̂
+
p (f) + max(0, R̂−u (f)− πpR̂−p (f)), (2)

where R̂+
p (g) is the risk of classifying the positive nodes as

positive. The training is done by minimizing Equation (2).
The main limitation of these risk estimators is that the prior

πp should be known in advance of the training, which is not
possible in real-world PU learning scenarios. Moreover, they
do not work well in imbalanced settings where the number of
observed examples is very small, since the unlabeled examples
dominate the training. We address the two limitations by our
GRAB, which does not require πp and performs well in highly
imbalanced settings by using the unlabeled examples as both
positive and negative ones with approximate marginals.

C. Loopy Belief Propagation

Loopy belief propagation (LBP) is an inference algorithm
for graphical models, which has been used widely for the node
classification task [19]–[22]. A common approach is to treat a
graph as a pairwise Markov network with respect to the target
classes and run LBP to estimate the class distribution of each
node as an approximate marginal. In other words, each node
is treated as a random variable that is correlated with its direct
neighbors following the Markov property. The strength of LBP
is its stable performance even without feature vectors and the
linear scalability with the number of edges. We utilize LBP in
GRAB to estimate the marginal probabilities of nodes.

D. Graph Neural Networks

Graph neural networks (GNN) refer to deep neural networks
specialized for graph-structured data [23], [24]. Graph convo-
lution networks (GCN) [7] have shown a great performance for
semi-supervised node classification. Graph attention networks
(GAT) [8] improve GCNs by replacing the simple convolution
operation with a learnable attention mechanism that takes the
node representations as inputs. Deep graph informax (DGI)
[9] generalizes GNNs into challenging scenarios where node
labels are not observed. We use a GCN as the main classifier
f for PU learning in both GRAB and the baseline approaches
considering its robust and consistent performance.

III. PROPOSED METHOD

We propose GRAB (Graph-based Risk minimization with
iterAtive Belief propagation), an accurate approach for PU
learning on graph data without knowing the class prior. The
overall process of GRAB is shown in Algorithm 1. We first
introduce the objective function in Section III-A and describe

Algorithm 1: GRAB (Graph-based Risk minimization
with iterAtive Belief propagation).
Input : Graph G = (V, E), set P of positive nodes,

set U of unlabeled nodes, feature matrix X,
and classifier f with initial parameters θnew

Output: Best parameters θ and estimated prior π̂p
1 lnew ←∞ ; // Initial loss value
2 π̂new

p ← 0 ; // Initial estimation for πp
3 repeat
4 l, θ, π̂p ← lnew, θnew, π̂new

p ;
5 B← LBP(π̂p, G,P,U) ; // Algorithm 2
6 θnew ← arg minθ L̃(θ;X,y,B,P,U) ; // Eq. (10)
7 lnew ← L̃(θnew;X,y,B,P,U) ;
8 ŷi ← f(X, i; θnew) for all i ∈ V;
9 π̂new

p ← |U|−1
∑
i∈U I[ŷi(+1) > 0.5] ;

10 until lnew > l;

how to minimize it through the iterative process in Sections
III-B to III-D. We then analyze the theoretical properties of
GRAB in Section III-E.

A. Objective Function

In PU learning, we are given two sets of examples, P and
U , which contain positive and unlabeled ones, respectively.
Existing risk estimators [3], [17] replace the loss function for
negative data N , which is not given, with the loss functions
for positive and unlabeled data assuming that the exact prior
πp = P (Y = +1) is known. However, this assumption is not
feasible in real-world scenarios, considering the restriction that
negative data are not given; the exact calculation of πp is not
possible without additional knowledge.

Instead, we propose a latent variable zi ∈ {+1,−1} for each
unlabeled node i ∈ U indicating whether node i is positive or
negative. Let f be a node classifier with learnable parameters
θ. We propose the following objective function for the training
of f , which measures the negative log likelihood (NLL) for
all observed nodes and all possible states of unobserved nodes
by the expectation over p(z | X,y):

L(θ;X,y,P,U) =
1

|P|
∑
i∈P

(− log ŷi(+1))

+ Ez∼p(z|X,y)

[ 1

|U|
∑
j∈U

(− log ŷj(zj))
]
, (3)

where X is a feature matrix for all nodes, y is the label vector
for nodes P , and ŷi(u) = f(X, i; θ) is the prediction of f
for node i being labeled as u ∈ {+1,−1}. Thus, ŷi(+1) +
ŷi(−1) = 1 for every node i.

Equation (3) considers each unlabeled node j ∈ U as both
positive and negative by a soft label p(z | X,y). For instance,
if P (Zj = +1 | X,y) = 0.7, f is trained to produce (0.7, 0.3)
as the prediction ŷj for node j, where the first and second
elements correspond to the positive and the negative labels,
respectively. We use p(z | X,y) instead of the unknown prior



πp in existing risk estimators of Equations (1) and (2). The
important factor for the performance of f is the appropriate
modeling of p(z | X,y). Our idea is to model the given
graph G as a Markov network, assuming that all labeled and
unlabeled nodes are correlated with each other following the
structure of G, to fully leverage all given information.

B. Modeling Pairwise Markov Networks

The given graph G is an essential evidence for estimating
the relations between examples. We consider G as a pairwise
Markov network [25], based on the assumption that adjacent
nodes are correlated with each other with the Markov property.
This enables us to make a consistent probabilistic assumption
over the entire graph and to propagate limited observations to
the unlabeled nodes by probabilistic inference.

Then, the joint probability of z for all unlabeled nodes in
G is computed as the product of all node and edge potentials,
which determine the stochastic property of the graph. Given a
node potential φi for each node i and an edge potential ψij for
each edge (i, j), the joint conditional probability p(z | X,y)
given X and y is represented as follows:

p(z | X,y) =
1

T

∏
i∈U

φi(zi | X)
∏

(i,j)∈E

ψij(vi, vj | X), (4)

where T is a normalizing constant that makes the distribution
sum to one, and vi is a temporary variable representing either
yi or zi based on whether i ∈ P or i ∈ U . We omit X in φi
and ψij in the rest of this section for brevity.

The node potential φi represents the prior of node i for
being labeled as positive or negative without considering the
other nodes in the graph. Since the true prior πp is unknown,
we introduce and use an approximate prior π̂p, which we aim
to improve through the iterative process of GRAB. The value
of π̂p determines the node potential of each unlabeled node i
as φi(+1) = π̂p and φi(−1) = 1− π̂p.

We set the initial value of π̂p to zero, as no prior information
is given at first, treating all unlabeled nodes as negative. Then,
π̂p becomes accurate as the iterations of GRAB proceed, based
on the information of feature vectors and graphical structure.
It is noteworthy that the initial value of π̂p should be less than
0.5 for the stability of the algorithm, since a classifier can be
trained to predict all unlabeled nodes as positive if π̂p ≥ 0.5,
which indicates that all nodes are likely to be positive.

The edge potential ψij models an unnormalized joint prob-
ability of adjacent nodes i and j by a simple function that is
shared for all edges in the graph:

ψij(vi, vj) =

{
ε if vi = vj

1− ε if vi 6= vj .
(5)

The parameter ε determines the degree of homophily [19]. We
assume that adjacent nodes are likely to have the same label
by setting ε > 0.5, which is true in most real networks where
the edges represent the interactions between entities. We set
ε = 0.9 in all of our experiments.

Algorithm 2: Loopy belief propagation (LBP) with π̂p.

input : Approximate prior π̂p, graph G = (V, E),
set P of positive nodes, and set U of
unlabeled nodes

parameter: Edge potential function ψ
output : Belief bi for each i ∈ V

1 φi(+1), φi(−1)← 1, 0 for each i ∈ P ;
2 φi(+1), φi(−1)← π̂p, 1− π̂p for each i ∈ U ;
3 mij(+1),mij(−1)← 0.5, 0.5 for each (i, j) ∈ E ;
4 while convergence criterion is not met do
5 for each (i, j) ∈ E and v ∈ {+1,−1} do
6 mnew

ij (v)←∑
u φi(u)ψ(u, v)

∏
k∈Ni\{j}mki(u) ;

7 end
8 mij ← mnew

ij for each (i, j) ∈ E ;
9 end

10 for each j ∈ V and u ∈ {+1,−1} do
11 T ←

∑
v∈{+1,−1} φj(v)

∏
i∈Nj

mij(v) ;
12 bj(u)← 1

T φj(u)
∏
i∈Nj

mij(u) ;
13 end

C. Estimation by Approximate Marginals

The computation of objective function L is intractable, due
to the expectation over z that involves O(2|U|) computations.
Thus, we decompose the joint distribution into the product of
marginals, instead of computing the expectation directly:

p(z | X,y) ≈
∏
i

pi(zi | X,y), (6)

where pi is the marginal distribution for node i.
We run loopy belief propagation (LBP) to get the marginals

of nodes approximately. The computation of LBP takes linear
time with the number of edges, and is thus an efficient way to
marginalize the joint distribution in large graphs. LBP updates
messages for all edges via iterations. A message mij(v) from
node i to j represents the probability of node j having state
v ∈ {+1,−1} estimated by node i. Every message mij(v) is
initialized as 0.5 and updated through iterations as follows:

mij(v)←
∑

u∈{+1,−1}

φi(u)ψij(u, v)
∏

k∈Ni\{j}

mki(u), (7)

where Ni is the set of neighbors of node i. LBP is run until
the messages converge, taking typically a few iterations.

The belief bj(u) of each node j for state u, which approx-
imates the marginal probability pj(u | X,y), is computed as
follows after the convergence of messages:

bj(u) =
φj(u)

∏
i∈Nj

mij(u)∑
v∈{+1,−1} φj(v)

∏
i∈Nj

mij(v)
. (8)

Algorithm 2 describes the process of LBP, which takes an
approximate prior π̂p to determine the potentials of unlabeled
nodes. The algorithm stops if the difference between messages



in consecutive iterations is smaller than a threshold θ, which
is set to 10−4 in all of our experiments.

Given the approximate marginals, which are represented as
a belief matrix B ∈ R|V|×2, we rewrite the objective function
L of Equation (3) without the expectation term:

L(θ;X,y,B,P,U) ≈ 1

|P|
∑
i∈P

(− log ŷi(+1))

+
1

|U|
∑
j∈U

∑
zj∈{+1,−1}

(−bj(zj) log ŷj(zj)). (9)

This involves the approximate marginal bj of each unlabeled
node j as the answer for training f , considering the relations
between all positive and unlabeled nodes in the graph by the
modeling of a pairwise Markov network.

We then propose our final objective function that generalizes
the negative log likelihood as a loss function l:

L̃(θ;X,y,B,P,U) =

1

|P|
∑
i∈P

l(ȳi, ŷi) +
1

|U|
∑
j∈U

l(bj , ŷj), (10)

where ȳi is the one-hot representation of yi, which is either
(1, 0) or (0, 1), and bj and ŷj are probability vectors of length
two representing the beliefs and predictions, respectively, for
node j. Equation (10) becomes the same as Equation (9) if
we adopt the cross entropy function as l, which is defined as
l(ȳi, ŷi) = −ȳi(+1) log ŷi(+1)− ȳi(−1) log ŷi(−1).

D. Iterative Risk Minimization
GRAB iteratively improves the quality of approximate prior

π̂p, which is the evidence for computing the approximate
marginals of unlabeled nodes. GRAB takes two alternate steps
at each iteration as shown in Algorithm 1: marginalization and
update steps. The estimate π̂p is initialized to zero as we have
no prior information, as discussed in Section III-B.

In the marginalization step, we run LBP to get approximate
marginals of latent variables z given the current estimate π̂p.
The result is given as a belief matrix B. In the update step, we
find the best parameters θnew of f that minimizes the objective
function of Equation (10) given B:

θnew = arg min
θ
L̃(θ;B). (11)

We write only the belief matrix B as an input variable, as it
is the only variable that changes through iterations.

Based on the new parameters θnew, we update the approx-
imate prior π̂p using the predictions of f :

π̂new
p =

1

|U|
∑
i∈U

I[ŷi(+1; θnew) > 0.5], (12)

where I is an indicator function that returns 1 if the condition
holds, and 0 otherwise. As a result, we leverage the knowledge
of f with θnew to improve the estimation π̂new, which is used
at the next iteration to get better estimates of marginals.

The iterations stop if the current L̃(θnew) is larger than that
of the previous iteration. GRAB returns the trained classifier
f with the estimated prior π̂p as a result.

E. Theoretical Analysis

We analyze GRAB theoretically in terms of its relation to
the EM algorithm, and the time and space complexities.

1) Relation to the EM Algorithm: The EM algorithm [26]
is an iterative approach to maximize the likelihood p(y | X; θ)
of target variables y given input variables X and parameters
θ by introducing latent variables z. Each iteration of the EM
algorithm consists of expectation and maximization steps.

The expectation (E) step computes the expectation of the
log likelihood with respect to the conditional distribution of z
given the current parameters θ(t) at the t-th iteration:

Q(θ | θ(t)) = Ez∼p(z|X,y,θ(t))[log p(y, z | X, θ)]. (13)

The maximization (M) step finds new parameters that max-
imize the computed expectation:

θ(t+1) = arg max
θ

Q(θ | θ(t)). (14)

The convergence is checked for either the log likelihood or
the parameters θ. The algorithm goes back to the E step if the
convergence criterion is not satisfied, and returns the current
parameters otherwise. The EM algorithm always improves the
likelihood for observed data through the iterations [27].

The main objective of GRAB is to find the best parameters
θ∗ of the classifier f through the iterative optimization by the
approximate marginals B and prior π̂p. The iterative process
of GRAB is similar to the EM algorithm as it introduces latent
variables to model the unlabeled nodes. With this perspective,
GRAB approximates the two distributions p(z | X,y, θ(t)) and
p(y, z | X, θ) in Equation (13) with different marginalization
to address the difficulty of PU learning.

First, the conditional distribution p(z | X,y, θ(t)) given the
current parameters θ(t) is approximated by the multiplication
of beliefs computed by the LBP algorithm with π̂p:

p(z | X,y, θ(t)) ≈
∏
i∈U

bi(zi). (15)

Second, the distribution p(y, z | X, θ) with new parameters
θ is approximated by the classifier f , which is also considered
as a marginalization function that gives the label distribution
of each node based on all given information.

p(y, z | X, θ) ≈
∏
i∈P

ŷi(+1)
∏
j∈U

ŷj(zj), (16)

where ŷi(u) is the prediction f(X, i; θ) of f for node i being
labeled as u ∈ {+1,−1}.

The marginalization assumption of Equations (15) and (16)
leads to Lemma 1 and Theorem 1 that summarize the relation
between GRAB and the EM algorithm.

Lemma 1. Given the assumptions of Equations (15) and (16),
the objective function of GRAB in Equation (10) reduces to
the expectation function Q of Equation (13) if |P| = |U| and
the loss function l is the cross entropy function: l(ȳi, ŷi) =
−ȳi(+1) log ŷi(+1)− ȳi(−1) log ŷi(−1).



Proof. We derive −L̃(θ) from Equation (13), because the goal
of training is to minimize the objective function:

Ez∼p(z|X,y,θ(t))[log p(y, z | X, θ)]

=
∑
z

p(z | X,y, θ(t)) log p(y, z | X, θ)

≈
∑
z

p(z | X,y, θ(t))(
∑
i∈P

log ŷi(+1) +
∑
j∈U

log ŷj(zj))

≈
∑
i∈P

log ŷi(+1) +
∑
j∈U

∑
zj∈±1

bj(zj) log ŷj(zj)

= −
∑
i∈P

l(ȳi, ŷi)−
∑
j∈U

l(bj , ŷj).

We prove the lemma by the assumptions of |P| = |U| and the
loss function, resulting in Equation (10).

Theorem 1. The iterative process of GRAB is a special case
of the EM algorithm with the same assumptions as in Lemma
1 and assuming that the training of f finds the global optimum
of new parameters as θnew = arg minθ L̃(θ;B).

Proof. The objective function of Equation (10) is the result of
running the E step due to Lemma 1. Finding new parameters
θnew in Equation (11) corresponds to the M step of Equation
(14). GRAB takes the two steps alternately at every iteration,
which is the same as the EM algorithm, and thus the iterative
process of GRAB is a special case of the EM algorithm.

2) Time and Space Complexities: GRAB is scalable to large
graphs, due to the linear scalability with the number of edges
and nodes in the given graph G. For simplicity, we assume a
GCN having r layers as the classifier f , where the number d
of features of each node is the same in all layers.

Lemma 2. The time complexity of GRAB (Algorithm 1) is

O(no(nb|E|+ nfrd(|E|+ |V|d))),

where no is the number of outer iterations in Algorithm 1, nb
and nf are the number of LBP iterations and the number of
epochs for training f , respectively, for each outer iteration.

Proof. The time complexity of LBP is O(nb|E|), because 2|E|
messages are updated at each iteration, and each update is
O(1). The complexity of training f is O(nfrd(|E| + |V|d)),
which runs f for nf times until the parameters converge. The
two steps are run for the no iterations of GRAB.

Lemma 3. The space complexity of GRAB (Algorithm 1) is
O(rd2 + rd|V|+ |E|)).

Proof. GRAB consists of marginalization and update steps. In
the marginalization step, LBP uses O(|V|+ |E|) space to save
the messages and beliefs. In the update step, the training of f
requires storing the node features and weight matrices at all
layers, using O(rd2 + rd|V|) space [28].

IV. EXPERIMENTAL SETTINGS

We introduce our experimental settings including datasets,
competitors, and the split of training and test data. All of our
experiments are done at a workstation with GTX 1080 Ti.

TABLE II: Summary of datasets.

Name Nodes Edges Features Pos. Neg.

Cora1 2,708 5,278 1,433 818 1,890
Citeseer1 3,327 4,552 3,703 701 2,626
Cora-ML2 2,995 8,158 2,879 857 2,138
WikiCS3 11,701 215,603 300 2,679 9,022

MMORPG4 6,312 68,012 136 298 401
1 https://github.com/kimiyoung/planetoid
2 https://github.com/abojchevski/graph2gauss
3 https://github.com/pmernyei/wiki-cs-dataset
4 Private to a company.

A. Datasets

We use five datasets in our experiments, which are summa-
rized in Table II. The first four datasets have been used widely
for node classification tasks. Cora, Citeseer, and Cora-ML are
citation networks [29], [30] whose nodes represent scientific
publications classified by the research areas and have bag-of-
words feature vectors about their textual contents. WikiCS [31]
consists of computer science articles in Wikipedia connected
by hyperlinks. The classes represent the different branches of
fields, and the features represent the contents of articles as the
average of pre-trained GloVe word embeddings [32].

Since each dataset has multiple target labels, we treat the
label with the largest number of nodes as positive and the rest
as negative for binary classification. The resulting numbers of
positive and negative nodes are reported in Table II with other
statistics of datasets such as the number of features.

In addition to the public datasets, we perform experiments
on a private dataset crawled from a massively multiplayer
online role-playing game (MMORPG). In this dataset, fraud-
ulent users use automatic scripts to quickly collect the game
money for the purpose of exchanging it to real money, causing
normal users to have negative experience. The nodes represent
users, and the edges represent the interactions between game
characters such as participating in the same party. Our goal is
to detect fraudulent users in the graph by a classifier.

The MMORPG dataset is different from the public datasets
in that the exact labeling of nodes is very difficult, especially
for the negative label. This is because all fraudulent users act
normally until they get caught, and thus a labeler cannot have
evidence to conclude that a user is normal. On the other hand,
the positive label can be assigned confidently to the fraudulent
users whose usage of automatic scripts is detected. Thus, this
dataset is a real-world example of graph-based PU learning,
where the true class prior πp is unknown. For the evaluation,
we give negative labels to users who are highly likely to be
normal based on the domain knowledge of the game.

B. Baselines

We compare GRAB with previous models for graph-based
PU learning, including those for unsupervised representation
learning. We adopt a graph convolutional network (GCN) as
a base classifier for GRAB and most baselines.



TABLE III: The performance of GRAB and baselines, evaluated by the F1 score and accuracy over the unlabeled nodes. We
perform two kinds of experiments: a) the prior πp is unknown for all methods, and b) πp is known only for the competitors.
The F1 scores of zero represent that a model predicts all nodes as negative, and thus the recall is zero. GRAB outperforms all
baselines in most cases, without using the knowledge of the prior πp. OOM denotes the out of memory error.

Unknown Prior

Method Cora Citeseer Cora-ML WikiCS MMORPG
F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%)

GCN+CE 23.1±1.5 84.4±0.2 25.7±2.3 89.6±0.2 26.7±2.7 85.7±0.3 27.1±12. 88.9±0.9 24.3±9.2 76.7±1.5
GCN+PULP 40.2±1.7 86.1±0.2 37.1±3.0 90.3±0.4 38.3±1.3 86.4±0.2 30.3±7.7 87.9±1.1 33.7±12. 78.6±2.1
GCN+URE 42.4±1.5 86.8±0.2 39.1±2.0 90.6±0.2 49.1±3.6 88.6±0.5 0.0±0.0 87.1±0.0 28.5±10. 77.5±1.6
GCN+NRE 70.1±1.6 91.4±0.3 61.8±1.9 92.8±0.2 72.9±2.0 92.5±0.4 0.0±0.0 87.1±0.0 28.5±10. 77.5±1.6
Node2Vec 53.3±2.1 87.0±0.6 29.7±2.2 88.9±0.3 57.4±1.7 88.8±0.4 76.4±0.7 94.8±0.1 0.0±0.0 72.9±0.0
ARGVA 53.7±16. 88.1±2.4 22.7±30. 89.8±2.2 57.1±21. 89.7±2.5 0.0±0.0 87.1±0.0 3.6±8.0 73.5±1.2
LSDAN 52.3±3.9 87.5±0.6 18.4±25. 89.8±2.2 6.3±17. 83.9±1.6 OOM OOM OOM OOM

GRAB (ours) 80.4±0.2 93.0±0.1 69.7±0.4 92.9±0.1 85.0±0.1 94.9±0.0 79.1±1.4 93.9±0.5 94.6±0.5 97.2±0.3

Known Prior (except for GRAB)

Method Cora Citeseer Cora-ML WikiCS MMORPG
F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%)

GCN+CE 23.0±1.9 84.3±0.2 25.8±2.2 89.6±0.2 26.8±3.0 85.8±0.4 29.8±8.4 89.4±0.7 24.2±9.2 76.7±1.5
GCN+PULP 40.2±1.7 86.1±0.2 37.1±3.1 90.3±0.4 38.3±1.3 86.4±0.2 28.9±5.9 87.5±0.7 33.8±12. 78.6±2.1
GCN+URE 50.9±0.8 88.0±0.1 42.6±1.7 90.9±0.2 54.6±1.8 89.4±0.3 26.9±34. 89.5±3.2 89.0±2.5 94.7±1.1
GCN+NRE 76.7±0.9 92.7±0.2 66.2±1.1 93.2±0.2 80.0±0.6 94.1±0.2 26.9±34. 89.5±3.2 95.3±1.9 97.6±1.0
Node2Vec 58.1±1.5 87.1±0.4 32.7±2.2 88.4±0.5 62.3±1.9 89.1±0.6 81.0±0.3 95.5±0.1 81.4±2.1 91.2±1.0
ARGVA 62.3±9.4 89.2±1.9 17.9±29. 89.5±2.2 50.3±28. 88.7±3.1 0.0±0.0 87.1±0.0 89.3±4.4 94.5±2.2
LSDAN 63.5±4.1 89.4±1.0 47.0±19. 91.2±1.3 63.4±3.7 90.1±0.7 OOM OOM OOM OOM

GRAB (ours) 80.4±0.2 93.0±0.1 69.7±0.4 92.9±0.1 85.0±0.1 94.9±0.0 79.4±1.0 93.9±0.5 94.6±0.5 97.2±0.3

• GCN+CE uses the cross entropy (CE) loss for training
a GCN, treating all unlabeled nodes as negative.

• GCN+PULP uses PU-LP [12] to find relatively positive
nodes from the unlabeled ones. The remaining nodes are
assumed to be negative in the loss function.

• GCN+URE uses the unbiased risk estimator (URE) [17],
[18], which is an objective function specifically designed
for PU learning to estimate the unknown negative risk.

• GCN+NRE uses the non-negative risk estimator (NRE)
[3] instead of URE, forcing the objective function to be
positive and increasing the stability of training.

• Node2Vec [33] is a random walk-based model for learn-
ing low-dimensional representations of nodes.

• ARGVA [34] utilizes a variational autoencoder to learn
the embeddings of nodes with adversarial regularization,
based on the graph structure and node features.

• LSDAN [13] is the state-of-the-art model that improves
GCN by the long-short distance attention that effectively
combines the information of multi-hop neighbors.

For unsupervised models such as Node2Vec and ARGVA,
which require explicit classifiers on top of the generated node
embeddings, we use a linear classifier trained by NRE. This is
because NRE shows better performance than the typical loss
functions in many PU learning problems.

For the experiments in Sections V-A to V-D, we adopt the
default hyperparameter settings in GRAB and all baselines, as
we have no validation data for hyperparameter tuning due to
the non-existence of negative labels. For GCN models, we set
the number of layers to 2 and the size of hidden layers to 16.

We set ε = 0.9, which determines the degree of homophily
of our Markov Network modeling in Equation (5). We train
each model using the Adam optimizer [35] for 1,000 epochs
and stop the training if the training loss starts to increase. The
number of epochs is set to 2,000 only in the WikiCS dataset,
where the loss fluctuates a lot during the training. We use the
sigmoid function [3] as our loss function l.

Although the above setting correctly reflects the real-world
PU learning, we additionally report the performance of GRAB
and all baseline methods when negative labels are given for
the validation purpose. The result is given in Section V-E.

C. Evaluation

For each dataset, we use 50% of all positive nodes as the set
P of observed positive nodes, and treat the rest as unobserved
positive nodes Pt. All negative nodes are treated as unobserved
and denoted by Nt, as we assume PU learning. Then, we aim
to predict the label of each node in U = Pt ∪Nt as test data
by training a classifier for the labeled nodes P and unlabeled
nodes U ; all nodes are accessible during training, but the labels
of only P are observable as training data. If a dataset contains
nodes whose true labels are unknown even for the test, which
is the case of MMORPG, we include such nodes in U but
exclude them from calculating evaluation metrics.

We use the F1 score as the main evaluation metric, but report
also the classification accuracy for a thorough evaluation. We
run all experiments ten times with different random seeds and
report the average and standard deviation.
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Fig. 2: The performance of GRAB changing through the iterative optimization. The three rows of figures represent the value of
the objective function L̂(θ), the F1 score, and the estimated prior π̂p, respectively. The losses and F1 scores converge quickly
as the iterations proceed, while the approximate priors become close to the true priors.

A notable difference between GRAB and previous models
is that we do not require the true prior πp, which is defined as
πp = Pt/(Pt+Nt) in our experiments. Thus, we conduct two
kinds of experiments for the baselines a) with and b) without
the prior πp. When the prior is not given, we use the number
of labeled positive nodes over the number of all nodes as an
approximate prior for baselines, i.e., πp ≈ |P|/|V|, which is
the only observable statistic in our experiments and most PU
learning problems where Pt and Nt are not accessible.

V. EXPERIMENTAL RESULTS

We perform various experiments on the real world datasets
to answer the following questions:
Q1. Classification accuracy (Section V-A). How accurate is

GRAB compared to the baseline methods? How do the
results change with different ratios of positive nodes?

Q2. Effect of iterative learning (Section V-B). Does GRAB
predict the unknown value of πp accurately? How do the
accuracy and loss change during the iterations?

Q3. Scalability (Section V-C). Does GRAB show linear time
complexity with the number of edges in the graph?

Q4. Parameter sensitivity (Section V-D). How does the ac-
curacy of GRAB change with different hyperparameters
for the classifier and potential functions?

Q5. Accuracy with validation data (Section V-E). Assum-
ing that negative labels exist for the validation purpose,
does GRAB still outperform the baselines?

A. Classification Accuracy (Q1)

We compare GRAB with the baselines for graph-based PU
learning in Table III, with and without the true class prior πp;

GRAB does not use πp in both cases. GRAB shows the state-
of-the-art performance in most cases, even when πp is given
only to the competitors.

Most of the baselines completely fail in MMORPG when
no prior information is given, since few labeled examples are
given in this dataset; the ratio of observed positive nodes over
all nodes is only 4.7%, which is much smaller than those of
the other datasets. GRAB performs well even in this case, due
to the robust estimation of approximate prior π̂p.

We summarize the performance of GRAB and the baselines
with different ratios of observed positive nodes to unlabeled
ones in Fig. 1. We gradually decrease the ratio rp of positive
nodes from 0.5, which is the same as in Table III, to 0.2. The
problem becomes more difficult with smaller rp.

Fig. 1 shows that GRAB presents the best performance
among other models for different values of rp. All baseline
models fail completely when rp = 0.2, because of the shortage
of observed labels, but GRAB shows a marginal decrease of
the F1 score even in this case. This is because GRAB assigns
soft approximate labels, which evolve via iterations, to the
unlabeled nodes for the training of a GCN classifier.

B. Effect of Iterative Learning (Q2)

GRAB is an iterative algorithm that gradually minimizes
the objective function L̂ as shown in Algorithm 1. We study
how the performance of GRAB changes through the iterations
in Fig. 2 with respect to the value of L̂(θ), the F1 score for
unlabeled nodes, and the estimated prior π̂p. The performance
of the classifier f improves through the iterations in terms of
both the F1 score and the objective function. GRAB converges
in few iterations, demonstrating its stability in various types of
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Fig. 3: The running time of GRAB on induced subgraphs for
each dataset. In WikiCS and MMORPG, which are larger than
other datasets, the time increases linearly with the number of
edges. In the other datasets, the time does not make a notable
difference, due to the parallel computation of GPUs.

datasets, even though the best iteration number is different for
each graph; for instance, GRAB stops at iteration 1 at WikiCS,
while GRAB stops at iteration 2 for MMORPG.

The estimated prior π̂p starts from zero, because we have
no information about the unlabeled nodes before the iterations
begin. The value of π̂p at iteration 0 in Fig. 2 represents
the estimation from the initial GCN trained by the objective
function L̃ that is generated with the assumption of π̂p = 0.
Then, π̂p becomes close to the true prior πp through iterations,
which is represented as the red dashed lines. The estimation is
almost accurate in Cora and Citeseer even though GRAB has
no prior knowledge about the class distribution. This implies
that the graph structure and feature vectors make meaningful
clusters of nodes that are related to their classes, and GRAB
extracts such information effectively through the iterations.

C. Scalability (Q3)

We validate the linear time complexity of GRAB stated in
Lemma 2 by measuring the computational time on subgraphs
with different sizes in Fig. 3. We select a random subset of
nodes for each dataset, whose induced subgraph contains p|E|
edges, where p varies in {0.1, 0.2, · · · , 0.9}. Thus, we create
nine subgraphs for each dataset.

The figure shows that the computational time of GRAB is
sublinear with the number of edges in a graph. In WikiCS and
MMORPG, which are large datasets that contain 215,603 and
68,012 edges, respectively, the time increases linearly with the
number of edges. In the other datasets having at most 8,158
edges, the computational time remains similar even with the
different number of edges. This is because these datasets are
small enough to be processed in parallel by GPUs.

D. Parameter Sensitivity (Q4)

We investigate the accuracy of GRAB with different values
of hyperparameters in Fig. 4. We tune the dimension h of GCN
hidden layers in [16, 128], the number r of GCN layers in
[2, 5], and the degree ε of homophily for the Markov network
modeling in [0.6, 0.9]. The figure shows that the performance
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Fig. 4: The accuracy of GRAB with different hyperparameters:
the dimension of GCN layers, the number of GCN layers, and
the degree of homophily for the Markov network modeling.
GRAB produces a superior performance in most hyperparam-
eter settings, showing its robustness and stability.

of GRAB is robust to such hyperparameters, producing stable
and consistent results in all cases.

Still, the results suggest that fewer parameters lead to better
performance in general. For instance, the accuracy decreases in
most datasets when h = 128 or r ≥ 4. This is because we deal
with the PU learning problem where a classifier with many
parameters is expected to overfit to the positive observations.
It is also observed that larger ε leads to better performance in
all cases, because large ε effectively propagates the observed
information of P to the entire graph, increasing the degree of
correlation between adjacent nodes.

E. Accuracy with Validation Data (Q5)

In real world PU learning, there is no validation step for
tuning the hyperparameters since we have no negative nodes
during training; using only positive ground truth labels in val-
idation leads to learning a trivial classifier that always outputs
‘positive’. That is the reason we performed all experiments in
Sections V-A to V-D with fixed hyperparameters as discussed
in Section IV-B. Although such setting exactly reflects the real
world PU learning, we perform an additional study assuming
that a few negative labels, in addition to the observed positive
labels, are given for the validation purpose.

Specifically, we search the dimension of GCN layers in
{16, 32, 64, 128} and the number of GCN layers in {2, 3,
4} for models that use GCN classifiers including GRAB. For
Node2Vec and ARGVA, which are designed for unsupervised
representation learning, we tune the size of embeddings in
{16, 32, 64, 128}. We also generalize the linear classifier used
for Node2Vec and ARGVA to multilayer perceptrons with the
number of layers in {2, 3, 4}. We use 10% of all positive
nodes for validation, 50% for training, and 40% for test. We
use 20% of all negative nodes for validation and 80% for test.
The true prior πp is unknown for all approaches.

Table IV compares the performance of all models. Every
method performs better than in Table III, due to the existence
of validation data. Still, GRAB consistently produces the best
performance among all methods.



TABLE IV: The performance of GRAB and baselines with tuned hyperparameters, evaluated by the F1 score and accuracy over
the unlabeled nodes. The hyperparameters are tuned assuming that there exist negative labels, in addition to positive labels,
for the validation purpose. GRAB outperforms all baseline models even in this case. OOM denotes the out of memory error.

Performance with Hyperparameter Tuning

Method Cora Citeseer Cora-ML WikiCS MMORPG
F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%)

GCN+CE 69.6±1.4 91.2±0.3 56.1±3.6 92.4±0.4 76.0±0.9 93.3±0.2 67.5±4.8 93.2±0.7 43.3±8.6 80.5±1.8
GCN+PULP 76.6±1.4 92.7±0.3 67.8±1.6 93.5±0.2 81.4±0.3 94.3±0.1 56.5±5.8 90.5±0.8 72.5±6.2 88.4±2.0
GCN+URE 65.3±1.5 90.4±0.3 54.0±1.6 92.1±0.2 58.1±1.6 90.0±0.3 32.4±17. 67.5±25. 48.9±19. 67.3±21.
GCN+NRE 75.4±0.5 92.3±0.1 64.6±0.3 93.1±0.1 75.1±0.3 93.0±0.1 24.0±3.0 46.8±29. 53.8±18. 64.7±23.
Node2Vec 52.8±3.3 86.8±0.5 26.2±2.2 88.9±0.3 59.1±1.7 89.0±0.3 80.3±0.7 95.4±0.2 33.7±37. 77.8±11.
ARGVA 61.9±2.5 88.4±1.3 59.2±7.2 91.9±1.3 60.1±3.5 88.9±0.6 25.5±12. 72.3±17. 40.7±7.2 79.0±1.3
LSDAN 62.1±1.0 89.3±0.2 25.4±0.0 45.5±0.0 70.5±1.9 91.8±0.4 OOM OOM OOM OOM

GRAB (ours) 81.5±0.8 93.2±0.4 73.4±1.7 92.8±0.8 84.5±0.2 94.5±0.1 83.1±0.8 95.4±0.1 98.0±0.5 98.9±0.2

VI. CONCLUSION

In this work, we have proposed GRAB, an accurate method
for PU learning on graph-structured data without class prior.
The objective function of GRAB does not require the true prior
by modeling unlabeled nodes in a graph as latent variables
and using the expectation of their joint distribution as pseudo
labels for training a classifier. For the accurate modeling of
the joint distribution, GRAB infers the relationships between
variables from the graph by assuming it as a pairwise Markov
network. Experiments on five real-world datasets show that
GRAB achieves the state-of-the-art performance in all cases
even when all baselines fail to learn any knowledge from the
limited observations. Future works include extending GRAB
to edge-attributed graphs that provide rich information about
the relations between nodes.
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