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Abstract—Given historical stock prices and sparse tweets, how
can we accurately predict stock price movement? Many market
analysts strive to use a large amount of information for stock
price prediction, and Twitter is one of the richest sources of
information presenting real-time opinions of people. However,
previous works that use tweet data in stock movement prediction
have suffered from two limitations. First, the number of tweets is
heavily biased towards only a few popular stocks, and most stocks
have insufficient evidence for accurate price prediction. Second,
many tweets provide noisy information irrelevant of actual price
movement, and extracting reliable information from tweets is as
challenging as predicting stock prices.

In this paper, we propose SLOT (Self-supervised Learning
of Tweets for Capturing Multi-level Price Trends), an accurate
method for stock movement prediction. SLOT has two main ideas
to address the limitations of previous tweet-based models. First,
SLOT learns embedding vectors of stocks and tweets in the same
semantic space through self-supervised learning. The embeddings
allow us to use all available tweets to improve the prediction for
even unpopular stocks, addressing the sparsity problem. Second,
SLOT learns multi-level relationships between stocks from tweets,
rather than using them as direct evidence for prediction, making
it robust to the unreliability of tweets. Extensive experiments on
real world datasets show that SLOT provides the state-of-the-art
accuracy of stock movement prediction.

Index Terms—stock price movement prediction, self-supervised
learning, Twitter, attention LSTM, time series forecasting

I. INTRODUCTION

Given historical stock prices and sparse tweets, how can
we accurately predict the stocks’ price movement? Stock price
prediction is an important task that has attracted increasing at-
tention in data mining and machine learning communities [1]–
[6]. An accurate prediction is challenging due to the random
and noisy nature of stock markets, but can result in enormous
profit of investment. We formulate the problem as binary
classification of stock price movement into a rise or a fall,
rather than forecasting their exact values, since it makes the
problem more tractable while maintaining the predictive power
that we are interested in [1], [2], [7].

Previous works on stock movement prediction are catego-
rized into three groups based on the type of source informa-
tion. The first group [1], [2], [7] uses only price information for
prediction, focusing on finding patterns from historical prices.
However, they give limited performance since they do not use
rich information from other sources such as news or tweets.
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Fig. 1: The accuracy and MCC of our proposed SLOT and
baseline approaches in real datasets. SLOT consistently gives
the best performance in all datasets and metrics, thanks to
its consideration of multi-level price trends through self-
supervised learning of tweets.

The second group [8], [9] utilizes news data for prediction.
News articles provide formal and reliable information, but their
information spreads more slowly than in social media, where
people share their real-time opinions. The last group [4], [10]
utilizes tweet data to get timely information, but there are two
limitations in tweet data that prevent existing approaches from
getting useful information: sparsity and unreliability.

The problem of sparsity comes from the biased distribution
of the number of tweets that mention each stock. Most tweets
focus only on a few popular stocks such as AAPL or GOOG,
while most of the stocks have an insufficient number of tweets.
The problem of unreliability comes from the characteristic
of Twitter, where any user can post unconfirmed information
about the market. It is not safe to rely completely on the
contents of tweets to extract signals predictive of the market
movement, without considering the risk of getting wrong
information.

In this paper, we propose SLOT (Self-supervised Learning
of Tweets for Capturing Multi-level Price Trends), an accurate
method for stock movement prediction which utilizes sparse
noisy tweets to extract multi-level patterns from historical
prices. SLOT addresses the two limitations of tweet-based
models with the following ideas. First, SLOT learns latent
representations of stocks and tweets in the same vector space
through self-supervised learning. This allows us to utilize any
tweet for any stock based on the distance in the embedding



space, avoiding the problem of sparsity. Second, SLOT does
not use tweets directly for the prediction of price movement;
SLOT rather utilizes tweets to capture the global market trend
and to find the local correlations between stocks. This makes
SLOT robust to the unreliability of tweets while utilizing the
timely information provided by a collection of tweets.

We summarize our main contributions as follows:
• Self-supervised learning for sparse tweets. SLOT uses

a masked language model to learn tweet and stock em-
beddings in a self-supervised way. This allows unpopular
stocks to use all available tweets based on the embedding
distance, alleviating the sparsity problem of tweets.

• Capturing multi-level tweet trends. SLOT uses tweets
to understand the multi-level correlations between stocks
in global and local views, rather than as direct evidence
for prediction. This allows SLOT to avoid the unreliabil-
ity problem of tweets by focusing on the occurrences of
stocks instead of the sentiment of tweets.

• Experiments. Extensive experiments show that SLOT
provides the best accuracy in stock movement prediction
with two types of metrics, outperforming competitors by
significant margins in real datasets (in Figure 1). We also
perform qualitative analysis on the learned embeddings,
revealing the relationships between target stocks.

The rest of this paper is organized as follows. We present
preliminaries and review related works on stock movement
prediction in Section II. We perform empirical studies on
the properties of public tweet data and then propose our
method SLOT in Section III. We present experimental results
on real-world stock datasets in Section IV and conclude at
Section V. The datasets used in our experiments are available
at https://github.com/deeptrade-public/slot.

II. PRELIMINARIES AND RELATED WORKS

We describe the problem definition, preliminaries, and re-
lated works on stock movement prediction.

A. Problem Definition
We formally define the problem of stock movement predic-

tion as follows. We have a set S of target stocks which we
aim to predict and a set {xst}s∈S,t∈T of feature vectors that
summarize historical prices, where T is the set of available
training days. The historical prices consist of the opening, the
highest, the lowest, and the closing prices of each stock (details
in Section III-B). We also have a set E of tweets, each of
which mentions at least one stock in S. Then, the problem is
to predict the binary movement of the price of each stock at
day T + 1, given the features and tweets until day T . This
problem definition is a generalization of the problems studied
in previous works for technical prediction [1], [2], which use
only the historical prices for stock movement prediction.

B. Stock Movement Prediction
There are two main categories of previous works for stock

movement prediction: a) methods using only historical prices
for prediction and b) methods using additional text data such
as news or tweets along with historical prices.

1) Methods with only price information
Many previous works assume that technical features made

from historical prices provide sufficient information for stock
movement prediction. They aim at finding meaningful patterns
from historical prices that are often noisy but provide a useful
evidence for prediction. Such technical models are used as the
backbone of many complex models, such as text-based ones,
that combine prices with other sources of information.

Many technical models are based on variants of recurrent
neural networks (RNN), which can find complex patterns from
historical prices [11]–[13]. Temporal attention has been used to
improve the performance of RNN-based models by combining
the information of multiple time steps [2], [14]. There are
also multivariate approaches which exploit the relationships
between different stocks [1], [3], [15], [16]. Lastly, there are
recent works which aim to deal with the noise of stock prices
with multi-frequency or multi-task learning [17]–[19].

The main limitation of such approaches is that they cannot
predict price movements whose information is not given in the
historical prices. The primary goal of our work in this paper
is to outperform such technical approaches by utilizing tweet
data in an effective way.

2) Methods with textual information
It is widely believed that information sources such as news,

tweets, or financial reports give meaningful evidence for stock
price prediction. Many previous works utilize textual data as
additional information for stock movement prediction. Most
of them focus on a few reliable sources of information such
as news [20]–[27], company descriptions [28], [29], or stock
reviews [30], [31]. However, such methods cannot always get
timely information that precedes the movement of a market.

There are approaches focusing on online social networks
such as Twitter, which provide abundant public opinions in
a timely manner [4], [32]. However, previous works that use
social network data have two notable limitations. First, they
select only a few popular stocks that contain a sufficient
amount of information as the target of prediction, ignoring
unpopular stocks having few mentioned tweets. Second, they
rely too much on the predictive power of such data, although
many social services provide wrong information that is often
irrelevant to the actual movement of stock prices.

In this work, we aim to address the limitations of previous
approaches by designing a multivariate predictor that utilizes
tweet data, considering their sparsity and noisiness at the same
time. This results in the state-of-the-art performance of stock
movement prediction by combining the strengths of technical
and tweet-based models, as we present in Section IV.

C. Attention LSTM

Long short-term memory units (LSTM) is a deep neural
network proposed to address the gradient vanishing problem
of recurrent neural networks. LSTM has been widely used as
the key component to capture temporal patterns of stock prices
[4], [7], [10], [13]. LSTM takes a sequence of feature vectors
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Fig. 2: The number of tweets that mention each stock in the ACL18 dataset: (a) all periods in the dataset, (b) a week, and (c)
a day. In (a), the top 6% of stocks including AAPL, FB, and GOOG have 50% of all available tweets, while the bottom 23%
of stocks have only 1% of all tweets. The sparseness is worse in (b) and (c), where 18% and 57% of stocks have no tweets
at all, respectively. These figures show the problem of sparsity, which is commonly observed in public tweet data.

as input and generates a hidden state vector for each time step.
We represent LSTM simply as follows:

h1, · · · ,hlast = LSTM(x1, · · · ,xlast), (1)

where xi is a feature vector, and hi is the hidden state for step
i. LSTM typically uses the state hlast of the last time step for
a classification task after consuming all input features.

Attention LSTM (ALSTM) improves LSTM by making
direct connections between the output and the hidden states
of all time steps using the attention mechanism [33]. Given a
list {h1, · · · ,hlast} of hidden states generated from LSTM, we
apply a single layer to each hidden state as h̃i = tanh(Whi+
b), where W and b are learnable parameters. Then, the states
are combined by attention as follows:

hatt =

last∑
i=1

αih̃i where αi =
u>h̃i∑last
j=1 u

>h̃j

, (2)

where u is a learnable parameter that is often called the query
of attention. In other words, u selects the most relevant time
steps based on the result of the dot product. The computed
weight αi shows how much step i is included in hatt.

ALSTM generates the final output hout = hlast ‖ hatt by
concatenating the hidden state hlast of the last time step and
the output hatt of the attention, where ‖ is the concatenation
operator between vectors. The last hidden state hlast is used in
addition to hatt as the basic output of LSTM that summarizes
all given features apart from the result of attention. Our SLOT
utilizes ALSTM as the main module for processing historical
prices due to its robust performance.

III. PROPOSED METHOD

We propose SLOT, an accurate method for stock movement
prediction, which effectively combines historical prices with
sparse noisy tweets. SLOT is designed to address the following
challenges of stock movement prediction:

1) Addressing the sparsity of tweets. Despite an abundant
number of available tweets, most of them mention only a
few popular stocks. This leaves most stocks in a market

to have an insufficient evidence for the prediction. How
can we extract meaningful information from tweets for
unpopular stocks?

2) Capturing global trend. The global trend of a market
affects the movement of every individual stock, but the
representative stocks leading the market keeps changing
over time based on people’s dynamic interests. How can
we effectively capture the global market trend?

3) Capturing local correlations. Individual pairs of stocks
make correlated movements of their prices, apart from
the global trend of the market. How can we capture such
correlations that consistently change over time?

We address the challenges with the following main ideas.

1) Self-supervised learning (Section III-C). We learn the
low-dimensional embeddings of tweets and stocks on
the same semantic space with self-supervised learning,
allowing unpopular stocks to utilize any tweets based on
the distance in the embedding space.

2) Global price movement attention (Section III-D). We
capture the global movement of a market by using the
average of all tweet embeddings at each day as the query
of attention for combining the movements of all stocks
in the market with dynamic weights.

3) Tweet-based local similarities (Section III-E). We find
the local similarities between stocks by performing two
different attention steps: one for finding relevant tweets
for each target stock, and the other for finding relevant
pairs of stocks from the selected tweets.

In Section III-A, we present observations derived from tweet
data, which motivate us to propose the main ideas of SLOT.
In Section III-B, we give an overview of our SLOT, including
the main predictor module which takes as input the tweet
trend vectors generated from our self-supervised learning and
trend aggregation modules. In Section III-C, we introduce our
algorithm for learning the embeddings of stocks and tweets. In
Section III-D and III-E, we introduce our ideas for aggregating
tweet vectors globally and locally, respectively.



TABLE I: Confusion matrices for predicting price movement
with sentiment analysis of tweets. Approaches 1 and 2 deter-
mine the sentiment of each tweet in different ways (details are
in Section III-A). Meaningful correlations between sentiment
and price movement are not observed from the results.

(a) Approach 1

Sentiment
Price Pos. Neg.

Rise 6,264 25,298
Fall 6,537 29,320

(b) Approach 2

Sentiment
Price Pos. Neg.

Rise 7,935 23,627
Fall 8,331 27,526

A. Observations and Motivations
Twitter is one of the most popular online social networks,

where users publicly express their opinions by tweets.1 Com-
pared to news articles or financial reports which provide clean
and reliable information, Twitter is a place where people get
swift information that is unreliable and often wrong. Previous
works on stock price prediction [4], [10] focused on exploiting
the timeliness of tweets, based on the belief that they provide
meaningful evidence of forecasting. However, there exist two
essential limitations of tweet data, which have been neglected
in previous works for stock price prediction.

Sparsity limitation. Most tweets mention only a few pop-
ular stocks, while other stocks have an insufficient number of
tweets for prediction. Figure 2 shows the number of tweets
that mention each stock in the ACL18 dataset [4]. It is clear
in Figure 2a that a few popular stocks such as AAPL, FB,
and GOOG have most of the tweets. Since the bottom 23% of
stocks have only 1% of all tweets, it is difficult for tweet-based
models to make accurate prediction for such stocks. Moreover,
if we decrease the query time range, the sparseness becomes
even worse due to the shortage of samples: 18% and 57% of
stocks have no tweets in Figures 2b and 2c, respectively.

Random sentiment. Tweets often provide information irrel-
evant to the price movement. We verify this characteristic by
conducting sentiment analysis with a popular language model
based on BERT [34]. The model we use is publicly available,2

and it predicts the sentiment of a text into five classes from
very negative (class 1) to very positive (class 5). For each tweet
e that mentions stock s, we compare predicted sentiment me

with the binary price movement ye of stock s after the tweet
is released. That is, if the tweet e is from day t, the movement
ye is measured between day t and day t+ 1.

We use two approaches for classifying the sentiment of each
tweet into positive: a) tweet e is positive if argmax(me) ≥ 3,
and b) tweet e is positive if

∑5
i=3me,i >

∑2
i=1me,i, where

me,i is the i-th element of the sentiment vector me. Then, we
compare the prediction and the price movement as confusion
matrices in Table I, presenting two observations. First, most
tweets are predicted to have the negative sentiment while
the numbers of price rises and falls are similar. Second, the
amount of correlation between sentiment and price movement

1https://twitter.com/home
2https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment

Fig. 3: The number of tweets mentioning Walmart (WMT) in
the ACL18 dataset. The count increases dramatically with the
release of a warning on its sales, making WMT more popular
than Apple (AAPL). This shows that the popularity of a stock
in tweets reflects actual important events.

is negligible, implying that the sentiment of a tweet does not
provide meaningful information for prediction.

On the other hand, tweets give valid information for detect-
ing real-world events that affect the market. Figure 3 shows the
number of tweets mentioning Walmart (WMT) in the ACL18
dataset [4]. The number of tweets increases dramatically with
the release of a warning on its sales, making the stock become
more popular than AAPL.3 Such a steep change in the number
of tweets gives us unique information on the current status of
the market, which cannot be inferred from historical prices.
Such descriptive nature of tweets is the key information one
can extract for accurate stock movement prediction, regardless
of the sentiment or the reliability of individual tweets.

Motivations. Our SLOT is designed to address these two
limitations of tweet data. First, given each target stock s, we
find tweets that are the most relevant to s and use them for its
prediction, even though such tweets do not directly mention s.
Second, we use tweets to capture the global market trend and
the local similarities between stocks, rather than as the direct
evidence for price prediction. These ideas allow us to use all
available tweets to give information to even unpopular stocks,
regardless of the unreliability of their contents.

B. Overview of SLOT
We first describe the overall structure of SLOT and present

our main ideas in detail. Figure 4 illustrates the overview of
SLOT, which takes as input the stock and tweet embeddings
generated from self-supervised learning. SLOT uses attention
LSTM (ALSTM) as the main predictor, which has shown good
performance in previous works for stock movement prediction
[2], [14]. We assume that each stock s at day t contains a price
feature xst that describes its price movement until day t. Then,
ALSTM makes a binary prediction from the price features of
recent days and the trend features generated in global and local
ways based on the embedding vectors.

Price features. Table II shows the information of feature
xst for each stock s at day t [2], [14]. open, high, low, and
close represent the opening, the highest, the lowest, and the

3https://www.nytimes.com/2015/10/15/business/
walmart-sales-forecast-share-buyback.html
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Fig. 4: The overall structure of SLOT for making a prediction
ŷst for stock s at day t. SLOT learns stock and tweet embed-
dings by self-supervised learning (Sec. III-C) and creates two
types of trend features (Sec. III-D and III-E). The ALSTM
model combines the three types of features for prediction.

closing price at each day, respectively. adj close represents
the closing price that is adjusted to be invariant of stock split
events. The feature elements are categorized into three groups
based on their properties:
• Price movements in a day: c open, c high, c low
• Price movements between days: n close, n adj close
• Long-term movements: 5 day, 10 day, · · · , 30 day

Overall, daily prices on days t− 29 to t are used to generate
each feature vector xst of day t.

Main predictor. We use ALSTM as our main predictor for
stock movement prediction. Compared to Transformer [35] or
convolutional neural networks [36] which have been also used
for time series forecasting, ALSTM can effectively capture
complex evolving patterns of stock prices by a) updating the
hidden state in the chronological order and b) applying the
attention function to select the most informative time steps in
the history.

The main ideas of SLOT are designed to provide additional
information to ALSTM from tweet data, which cannot be
captured from historical prices, by making a multi-level feature
x̃st for each stock s at day t. Assume that we have generated
a global trend vector ot and a local trend vector cst for stock
s and day t from the price features of all stocks and tweets
at day t, based on the result of self-supervised learning. That
is, the tweets at day t enable us to understand the global and
local relationships between stocks shown at day t.

Then, we use a linear layer to generate a multi-level feature:

x̃st = W(xst ‖ ot ‖ cst) + b, (3)

TABLE II: Price features that compose a feature vector xst for
each stock s and day t. They summarize the price movements
of stock s until day t (details are in Section III-B).

Features Calculation

c open, c high, c low e.g., c open = opent/closet − 1
n close, n adj close e.g., n close = closet/closet−1 − 1
5 day, 10 day, 15 day

e.g., 5 day =
∑4

i=0 adj closet−i/5

adj closet
− 120 day, 25 day, 30 day

where W ∈ Rd×3d and bd are the learnable weight and bias
terms, respectively, ‖ is the concatenation operator between
vectors, and d is the size of features xst, ot and cst.

The resulting features are fed into ALSTM as follows:

ŷst = ALSTM(x̃s,t−w+1, x̃s,t−w+2, · · · , x̃st), (4)

where w is the window size of ALSTM, which is chosen as
a hyperparameter between 10 and 15 in our experiments.

Optimization. We train ALSTM to minimize the following
objective function:

L(θ) =
∑
t∈T

∑
s∈S

max(0, 1− ystŷst) + λ‖θ‖22, (5)

where θ is the set of learnable parameters of ALSTM, T is
the set of available days in training data, S is the set of target
stocks, yst ∈ {−1,+1} is the binary label of stock s at day
t, and λ is a hyperparameter for regularization. We use the
hinge loss [37] as in previous work [2] for stock movement
prediction. Note that the real-valued score ŷst is directly used
in Equation (5), and ŷst > 0 represents that we predict it as
a rise. The supervised training of ALSTM is done separately
from the self-supervised learning of embedding vectors.

C. Self-supervised Learning of Embeddings
The embeddings of stocks and tweets play an essential role

in the overall framework of our SLOT. We describe how to
learn tweet and stock embeddings in the same semantic space
in a self-supervised approach. Let S be a set of target stocks
and Es be a set of tweets that mention stock s ∈ S. Then, for
each stock s and tweet e ∈ Es, we learn a stock embedding
hs and a tweet embedding he together so that one embedding
vector can be used to query for the other. The goal of training
is to solve stock identification, which is to predict stock s that
a tweet e ∈ Es mentions from the content of the tweet, when
the stock symbol is masked. Figure 5 illustrates the process
of self-supervised learning of the embedding vectors.

Tokenization and masking. We first tokenize the words
in every tweet e with SentencePiece [38], which is a popular
word tokenizer that requires no preprocessing of texts. We use
a learnable embedding vector for each token as done in many
language models [34], [39]. Then, we replace all tokens in Es
that correspond to the name of stock s with a special token
MASK. This is because its name is the answer to the stock
identification problem. For example, assume that we have a
tweet “Thank you Apple for the new iPhone.” Then, we mask
the target symbol Apple and predict Apple from “Thank you
[MASK] for the new iPhone.”
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Fig. 5: The self-supervised learning step of SLOT for learning
the stock and tweet embeddings. BiLSTM makes an embed-
ding vector he for the given tweet e, and he is used to predict
the masked stock by the dot product with stock embeddings.
The stock embedding matrix S is learned as a parameter.

Stock predictor model. We use different approaches for
modeling stock and tweet embeddings. For stocks, we learn
the embedding hs of each stock s as a free parameter, which
is updated directly from backpropagation. Each embedding hs

is the s-th row of the stock embedding matrix S. On the other
hand, for tweets, we introduce a predictor network f and use
its output f(e) given the tokenized contents of each tweet e as
the embedding he. This is based on the observation that each
stock conveys unique information which is not decomposed,
while each tweet is a sequence of word tokens.

We use bi-directional LSTM (BiLSTM) as the embedding
model f to generate tweet embeddings. This is because uni-
directional LSTM is inappropriate for considering the context
of both sides of the masked token, which is the target of
our stock identification problem. Other language models such
as Transformer [34] can also be used, but we have found in
experiments that BiLSTM is more effective in our scenario,
as training data are insufficient to learn many parameters of
Transformer. Specifically, we run BiLSTM and use the state
vector generated at the masked token as he, instead of the end
of the tweet, to focus on its local context.

Optimization. We update three kinds of parameters in this
step: the embeddings of word tokens, the parameters of f , and
the embeddings of stocks. Given a tweet embedding he made
by f , our prediction for stock s is defined as follows:

ŷes =
exp(h>s he)∑

s′∈S exp(h
>
s′he)

. (6)

Then, we update all parameters to minimize the following
objective function, which is based on the cross entropy func-

tion:
l(θ) = −

∑
s∈S

∑
e∈Es

log ŷes. (7)

Advantages of stock identification. We expect the fol-
lowing two advantages of stock and tweet embeddings. First,
they can be used interchangeably in the main model for stock
movement prediction, because we make the tweet embeddings
become similar to the embeddings of their target stocks. This
is done by maximizing the dot product between embeddings
during training. Second, stock embeddings convey the infor-
mation of stock similarities, as the stocks frequently mentioned
together are likely to have similar embedding vectors. This is a
great advantage of our proposed approach for self-supervised
learning, since the preservation of similarities (and dissimilar-
ities) of entities is one of the most important requirement for
good embeddings that preserve their original properties.

D. Global Price Movement Attention

Since the price movement of each stock is affected by the
global trend of the market, it is essential to design an effective
summary of the market for predictions. However, traditional
market indices such as Nasdaq 100 cannot capture the dynamic
influence of each stock to the global trend due to the following
reasons. First, a traditional index computes a weighted average
of stock prices based on the market capitalization of stocks,
but the influence of each stock is not only determined by its
market capitalization. Second, the influence of each stock on
the market changes dynamically over time, since the interests
of people keep changing with real-world events.

We make a comprehensive market index by combining the
price information of multiple stocks based on their popularity
in tweet data. The generated global trend vector ot shown in
Figure 4 gives the comprehensive market information to each
prediction. Assume that we have embedding vectors hs and
he for each stock s and tweet e, respectively. We compute the
average gt of all tweet embeddings at day t. Then, we apply
the attention using gt as the query vector for combining the
price features of all stocks based on their stock embeddings.
The attention process is defined as follows:

ot =
∑
s∈S

αstxst where αst =
exp(g>t hs)∑

s′∈S exp(g
>
t hs′)

. (8)

xst is the price feature of stock s at day t, S is the set of all
stocks, and αst is the attention weight for aggregation.

Figure 6 illustrates the process of global aggregation, which
uses the average gt of all tweet embeddings at day t and the
matrix S of stock embeddings as the query and the key of
attention, respectively. The price features in Xt are aggregated
as a result of attention, generating the global trend vector ot.
As shown in Figure 4, the generated vector ot is concatenated
with the original feature vector xst and then fed into ALSTM,
providing comprehensive information of the market.

Recall that we learn the embedding vectors of stocks and
tweets to make the embedding he of tweet e become similar to
the embedding hs of stock s that the tweet e mentions. Thus,
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Fig. 6: The overview of global tweet aggregation for generat-
ing the global trend vector ot at day t. It uses the average of
all tweets at day t as the query vector of attention to combine
the price features based on their embeddings.

the attention of Equation (8) effectively finds the stocks that
are mentioned most actively at each day, and we expect that
such stocks represent the global trend of the market effectively
in terms of people’s interest. As a result, the global trend vector
works as a dynamic summary of stock movements, based on
people’s collective opinions represented in tweets.

E. Local Similarities between Stocks
Stocks in a market make local correlations based on their

unique properties, and such correlations often make their price
movements different from the global market trend. Accurate
estimation of such correlations between stocks is essential for
multivariate movement prediction. We propose to make a local
trend vector cst for each stock s at day t, which combines the
price movements of stocks relevant to s. The local trend cst
provides personalized market information for each stock s,
which is distinct from the global trend vector ot shared for all
target stocks. The vector cst is concatenated with the feature
xst and the global trend ot as shown in Figure 4, providing
comprehensive information to each prediction.

Figure 7 illustrates our proposed approach to aggregate the
price movements of multiple stocks in a local stock-wise view.
The module runs two steps of attention functions for a) finding
tweets that are relevant to each target stock and b) finding the
correlated stocks, respectively. The stock embedding matrix S
and the tweet embedding matrix Et are the main inputs of the
attention functions, where S contains the embedding hs of the
target stock s as its s-th row. The two attention functions work
similarly but with different objectives and inputs.

Attention to find relevant tweets. The first attention is to
find tweets relevant to each target stock s. Previous work [4]
found the relevant tweets based on whether they mention s or
not. However, this causes a severe imbalance between stocks,
following the sparsity problem that we described in Section
III-A. Thus, we find relevant tweets by using the embedding
hs of stock s as the query of attention as follows:

lst =
∑
e∈Et

αehe where αe =
exp(h>s he)∑

e′∈Et exp(h
>
s he′)

. (9)
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Fig. 7: The overview of local tweet aggregation for generating
the local trend vector cst for stock s at day t. It uses the stock
embedding hs as the query of the first attention and then uses
the result as the query of the second attention.

Et is the set of tweets at day t, he is the embedding of tweet e,
and αe is the attention weight. The resulting vector lst is the
weighted average of all tweets at day t based on their relevance
to the target stock s, computed from their embeddings.

Attention to find similar stocks. As a result of the attention
function of Equation (9), every stock has a representation lst
that summarizes all tweets at day t considering the relevance
to stock s. Our second attention uses the resulting tweet vector
to find the most relevant stocks at the moment. This is done
by using lst as the query vector of attention to aggregate the
price features at day t based on the stock embeddings:

cst =
∑
s∈S

αstxst where αst =
exp(l>sths)∑

s′∈S exp(l
>
sths′)

. (10)

The resulting local trend vector cst is concatenated to the orig-
inal feature vector xst and the global trend vector ot, making
the input of ALSTM for predicting the stock movement.

IV. EXPERIMENTS

We conduct experiments to answer the following questions
about the performance of SLOT:
Q1. Accuracy (Section IV-B). Does SLOT outperform pre-

vious approaches in stock movement prediction?
Q2. Embedding quality (Section IV-C). Do the embeddings

of stocks learned by SLOT preserve their actual relation-
ships in the vector space? Do the tweet embeddings find
the stocks that are relevant to their contents?

Q3. Ablation study (Section IV-D). How do the global and
local tweet trends of SLOT affect its performance?

A. Experimental Setup
We present our experimental setup including datasets, base-

line approaches, hyperparameters, and evaluation metrics.
Datasets. We use 3 benchmark datasets of stock movement

prediction: BIGDATA22, ACL18 [4], and CIKM18 [10] shown
in Table III. All datasets consist of high-trade-volume stocks



TABLE III: Summary of datasets. The Days column represents
the number of available days in each dataset.

Data Stocks Tweets Days Dates

BigData221 50 272,762 362 2019-07-05 to 2020-06-30
ACL182 87 106,271 696 2014-01-02 to 2015-12-30
CIKM183 38 955,788 352 2017-01-03 to 2017-12-28
1 https://github.com/stocktweet/stock-tweet
2 https://github.com/yumoxu/stocknet-dataset
3 https://github.com/wuhuizhe/CHRNN

in US stock markets. BIGDATA22 is a new dataset that we
collect and publicly release, while the other two datasets were
used in previous works for stock movement prediction. We
label the instances according to the increase rate of adjusted
closing prices. The increase rate is given as rsd = psd/p

s
d−1−1,

where psd is the adjusted closing price of stock s at day d.
Instances with the rsd ≥ 0.55% and rsd ≤ −0.5% are labeled as
1 and −1, respectively, for binary classification. We split each
dataset into training, validation, and test data chronologically,
as in recent works for stock movement prediction [1], [2].

Competitors. We compare SLOT with technical and tweet-
based competitors for stock movement prediction. Technical
approaches focus on capturing patterns of historical prices for
stock movement prediction. We concatenate the price features
of the last w days for non-sequential approaches, which take
only a single feature vector for each prediction.
• Logistic regression (LR) is the simplest baseline, which

draws a linear decision boundary between classes.
• Random forest (RF) is a strong feature-based approach,

which shows better performance than that of LR in many
cases by combining randomized decision trees.

• LSTM is a representative model for sequential data. We
take the model used in [11] for stock prediction.

• Attention LSTM (ALSTM) combines the hidden states
of multiple LSTM cells with the attention technique [7],
preserving the information of distant inputs.

• Adv-ALSTM [2] applies adversarial training to ALSTM
to improve its generalization performance. Adv-ALSTM
generates artificial features that the current model fails to
predict during training, making the model more robust.

• DTML [1] is the previous state-of-the-art model for stock
movement prediction, which combines the contexts of all
target stocks based on Transformer. DTML uses the same
price features as in Adv-ALSTM and SLOT.

Tweet-based competitors utilize tweet data to improve the
performance of stock prediction, and are given as follows:
• ALSTM-W makes tweet embeddings by Word2Vec [40]

and uses them in prediction. We find tweets that directly
mention each target stock, run Word2Vec to generate an
embedding for each tweet, compute the average of them,
and concatenate it with the price feature of ALSTM.

• ALSTM-D is similar to ALSTM-W, except that ALSTM-
D uses Doc2Vec [41] for generating tweet embeddings.
Doc2Vec makes more representative embeddings of texts,
but often shows poor generalization performance.

TABLE IV: Classification performance of SLOT and competi-
tors, measured with the accuracy (ACC) and the Matthews cor-
relation coefficient (MCC). The best is in bold, and the second
best is underlined. Our SLOT shows the best performance in
all datasets with both evaluation metrics.

Method BIGDATA22 ACL18 CIKM18

ACC MCC ACC MCC ACC MCC

LR 53.07 0.0200 52.20 0.0442 52.50 -0.0425
RF 47.10 -0.1114 51.94 0.0348 53.57 0.0119
LSTM 50.69 0.0127 52.75 0.0639 53.31 0.0216
ALSTM 48.69 -0.0254 51.82 0.0429 52.54 -0.0077
Adv-ALSTM 50.36 0.0120 53.11 0.0685 53.69 0.0217
DTML 51.65 0.0651 58.12 0.1806 53.86 0.0049

ALSTM-W 48.28 -0.0116 53.32 0.0754 53.64 0.0315
ALSTM-D 49.16 0.0090 52.98 0.0681 50.40 -0.0449
StockNet 52.99 -0.0163 53.60 -0.0248 52.35 -0.0161

SLOT (proposed) 54.81 0.0952 58.72 0.2065 55.86 0.0899

• StockNet [4] is a recent approach that uses tweets as the
main evidence of stock movement prediction. StockNet
uses variational autoencoders to represent tweets as low-
dimensional vectors. We use their official implementation
and take the average of five runs with different seeds.4

Evaluation metrics. We use two metrics to evaluate the per-
formance of stock movement prediction in different perspec-
tives: accuracy (ACC) and the Matthews correlation coefficient
(MCC) [42]. ACC is a popular metric, which has been used
widely in various classification problems. MCC improves the
fairness of evaluation especially when the numbers of positive
and negative samples are different. Let TP, TN, FP, and FN
denote true positives, true negatives, false positives, and false
negatives, respectively. Then, the MCC is defined as follows:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

Hyperparameters. We train our SLOT and all competitors
based on deep neural networks with the Adam optimizer [43].
The number of epochs is 150, and the batch size is set to 1024.
The space of hyperparameter search is given as follows:
• Regularization strength λ: {0.1, 0.5, 1.0}
• Learning rate: {0.001, 0.005, 0.01}
• Hidden dimension size of ALSTM: {8, 16, 32}
• Lag window size: {10, 15}
We run each model five times with different random seeds

and report the average performance in all cases.

B. Accuracy (Q1)

We compare the accuracy of SLOT and baseline methods
with the two evaluation metrics. The results are shown in
Table IV and Figure 1. Our SLOT consistently makes the best
performance on all datasets and metrics; SLOT shows up to
2.0%p higher accuracy and 0.0584 higher MCC, compared to
second-best methods.

4https://github.com/yumoxu/stocknet-code



TABLE V: The result of queries for finding the stocks whose
embeddings are the closest in the ACL18 dataset. Stocks in
similar sectors are clustered in the embedding space.

Query Top 1 Top 2 Top 3

AAPL AMZN PCLN BABA
FB GOOG PCLN BABA
BA CAT PM HD

BAC JPM HON C

TWEET

$AAPL iphone 6s spec leaks look
good. excited. might even buy one.

GOOG
FB

68.5%
7.8%
4.7%

AAPL

TWEET

rt AT_USER $KO $PEP $DPS $MNST
traditional soft drinks in decline.

WMT
JPM

11.8%
6.5%
4.9%

KO

Fig. 8: Tweets and the top 3 stocks whose embeddings are the
most matched with the embeddings of the tweets. The tweet
embeddings effectively capture the information of target stocks
from the contents of tweets.

In the ACL18 dataset, the performances of SLOT and
DTML, the best competitor, are significantly better than the
other baselines. This is because SLOT and DTML are mul-
tivariate methods that correlate the predictions for multiple
stocks, while the other baselines are univariate methods that
focus on individual ones. The global trend of a market affects
every stock in the market, making strong correlations between
stocks whether they are in the same financial sector or not. It
is essential to combine the information of multiple stocks to
maximize the performance of stock prediction.

The main difference between SLOT and DTML is how to
combine the price information from multiple stocks. DTML
uses only historical prices for conducting multi-head attention
between target stocks with a Transformer encoder. This is ef-
fective to some extent, but does not give additional information
to the predictor. On the other hand, SLOT utilizes tweet data to
learn inherent properties of target stocks that cannot be found
from the prices. This gives SLOT large flexibility for learning
stock correlations, resulting in higher accuracy.

C. Embedding Quality (Q2)

We analyze the stock and tweet embeddings learned by
self-supervised learning (Section III-C). Table V shows the
result of querying for the stocks whose embedding vectors
are the closest in the vector space. We measure the distance
between vectors based on the cosine distance, since our self-
supervised algorithm uses the dot product to select relevant
stocks for each tweet. The result shows that stocks in similar
sectors are close in the embedding space, even though we do
not provide any knowledge of such stocks. Note that popular
IT companies such as Apple (AAPL), Amazon (AMZN), and
Alibaba (BABA) are clustered in the embedding space. We
also observe that 1) manufacturing companies such as Boeing

TABLE VI: An ablation study of SLOT, where ALSTM is
the baseline without tweet data, SLOT-G is without the global
trend, and SLOT-L is without the local trend. Both global and
local trends improve the performance of SLOT.

Method BIGDATA22 ACL18 CIKM18

ACC MCC ACC MCC ACC MCC

ALSTM 48.69 -0.0254 51.82 0.0429 52.54 -0.0077
SLOT-G 52.21 0.0272 56.99 0.1718 51.29 0.0186
SLOT-L 51.17 0.0283 57.48 0.1829 55.10 0.0745

SLOT (proposed) 54.81 0.0952 58.72 0.2065 55.86 0.0899

(BA) and Caterpillar (CAT) are clustered, and 2) banks such as
Bank of America (BAC) and JP Morgan (JPM) are clustered
in the embedding space.

Figure 8 shows examples of tweets and the top three stocks
whose embeddings are the most matched with the embeddings
of the given tweets. KO represents the Coca-Cola company.
The predictions reflect the properties of stocks in the market.
For instance, GOOG and FB are predicted as the second and
the third options in the first tweet, respectively, based on the
tech-related content of the tweet. Walmart (WMT) appears as
the second-most related stock in the second tweet, due to its
relationship with drink companies. Such results demonstrate
the effectiveness of our self-supervised algorithm for learning
stock and tweet embeddings, which preserve the properties of
their original entities in a single semantic space.

D. Ablation Study (Q3)

We conduct an ablation study for SLOT and summarize the
result in Table VI. SLOT-G is a variant of SLOT without the
global tweet trend (Section III-D), and SLOT-L is the one
without the local tweet trend (Section III-E). ALSTM uses
the same price features as in SLOT but does not use tweet
data at all. Thus, ALSTM works as the baseline of SLOT and
its two variants, and its performance is the same as in Table
IV which compares SLOT with other competitors.

We have two observations from Table VI. First, SLOT
outperforms all its variants, showing the effectiveness of our
two main ideas for utilizing tweets to learn the relationships
between multiple stocks. Second, the two ideas of SLOT have
different effectiveness depending on the datasets. The global
trend is more effective in ACL18 and CIKM18, while the
local trend is more effective in BIGDATA22. This implies
that ACL18 and CIKM18 have strong market movements that
affect the movements of individual stocks, while BigData22
does not have such a strong market movement and it is more
important to focus on the relationships between stock pairs.
Our two ideas for utilizing sparse noisy tweets work effectively
in different ways, having their strengths in different datasets.

V. CONCLUSION

In this paper, we propose SLOT, an accurate method for
stock movement prediction, which exploits historical stock
prices and sparse tweets to maximize accuracy of prediction.



SLOT effectively addresses the problems of sparsity and unre-
liability of using tweets for stock movement prediction. SLOT
represents tweets and stocks as embedding vectors on the same
semantic space via self-supervised pre-training, allowing us
to use any tweet for any stock based on the distance in the
vector space which addresses the sparsity problem. SLOT also
captures global and local tweet trends by aggregating multiple
stocks based on the occurrences of stocks in tweets. This
allows us to focus on the popularity and the co-occurrence
information of stocks, rather than the sentiment of individual
tweets, avoiding the unreliability problem of tweet contents.
Extensive experiments on real world datasets show that SLOT
provides the state-of-the-art performance. We also demonstrate
the effectiveness of our proposed ideas through ablation and
case studies. Future works include combining multiple sources
of texts such as news articles or financial reports to further
improve accuracy.
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