
Fast and Scalable Distributed Loopy Belief Propagation on
Real-World Graphs

Saehan Jo

Seoul National University

naheas@snu.ac.kr

Jaemin Yoo

Seoul National University

jaeminyoo@snu.ac.kr

U Kang

Seoul National University

ukang@snu.ac.kr

ABSTRACT
Given graphswithmillions or billions of vertices and edges, how can

we efficiently make inferences based on partial knowledge? Loopy

Belief Propagation (LBP) is a graph inference algorithm widely used

in various applications including social network analysis, malware

detection, recommendation, and image restoration. The algorithm

calculates approximate marginal probabilities of vertices in a graph

within a linear running time proportional to the number of edges.

However, when it comes to real-world graphs with millions or

billions of vertices and edges, this cost overwhelms the computing

power of a single machine. Moreover, this kind of large-scale graphs

does not fit into the memory of a single machine. Although several

distributed LBP methods have been proposed, previous works do

not consider the properties of real-world graphs, especially the

effect of power-law degree distribution on LBP. Therefore, our

work focuses on developing a fast and scalable LBP for such large

real-world graphs on distributed environment.

In this paper, we propose DLBP, a Distributed Loopy Belief Prop-

agation algorithm which efficiently computes LBP in a distributed

manner across multiple machines. By setting the correct conver-

gence criterion and carefully scheduling the computations, DLBP

provides up to 10.7× speed up compared to standard distributed

LBP. We show that DLBP demonstrates near-linear scalability with

respect to the number of machines as well as the number of edges.

ACM Reference Format:
Saehan Jo, Jaemin Yoo, and U Kang. 2018. Fast and Scalable Distributed

Loopy Belief Propagation on Real-World Graphs. In WSDM 2018: WSDM
2018: The Eleventh ACM International Conference on Web Search and Data
Mining , February 5–9, 2018, Marina Del Rey, CA, USA. ACM, New York, NY,

USA, 9 pages. https://doi.org/10.1145/3159652.3159722

1 INTRODUCTION
Given large graphs that do not fit in a single machine, how can we

make inference on unobserved vertices? Loopy Belief Propagation

(LBP) is an inference algorithm which calculates approximate mar-

ginal probabilities of vertices based on partial information. It has

been widely used in various fields including social network analysis

[15, 16, 27, 31, 35], malware detection [5, 33], fraud detection [4, 28],

recommendation [14, 38], and image restoration [8].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00

https://doi.org/10.1145/3159652.3159722

A nice property of LBP is that its computation complexity scales

linearly with the number of edges. Since the computing of exact

marginal probabilities in a Markov Random Field (MRF) is known

to be computationally exorbitant, LBP has been one of the best alter-

natives. However, when it comes to real-world graphs whose sizes

are very large, the application of LBP on these graphs is problem-

atic in several aspects. First, the power-law degree distribution of

real-world graphs disrupts a steady convergence of LBP algorithm.

Second, LBP suffers from extensive computations per iteration due

to the large size of graph data. Finally, the high communication

overhead impedes the speed of distributed LBP algorithm since a

large graph is distributed across multiple machines.

In this paper, we propose DLBP, a Distributed Loopy Belief Prop-

agation, which solves the above challenges by 1) utilizing a conver-

gence criterion appropriate for real-world graphs, and 2) dividing

the vertices according to their degrees and carefully scheduling the

iterations to minimize data communications. As shown in Figure

1, DLBP minimizes the communication cost and achieves up to

10.7× speed up on real-world graphs compared to standard LBP.

Our contributions are as follows.

• Algorithm. We propose DLBP, a novel distributed algo-

rithm for LBP which solves the challenges associated with

the power-law degree distribution of real-world graphs.

• Analysis.We provide a theoretical analysis of two different

convergence criteria of LBP. Moreover, we analyze DLBP

in terms of the time complexity, space complexity, and the

amount of shuffled data.

• Experiment. We provide evidence of the theoretical analy-

sis by conducting rigorous experiments on DLBP to present

empirical results on real-world graphs. DLBP shows up to

10.7× speed up on real-world graphs compared to baseline

methods, as depicted in Figure 1.

The code of DLBP and the datasets are publicly available at

http://datalab.snu.ac.kr/dlbp. The rest of the paper is organized as

follows. In Section 2, we introduce the preliminaries and related

works on LBP and distributed graph processing frameworks. Section

3 presents our proposed method DLBP in detail. After showing

experimental results of DLBP on real-world graphs in Section 4, we

conclude in Section 5.

2 PRELIMINARIES AND RELATEDWORKS
In this section, we provide preliminaries and related works on belief

propagation and graph processing. Table 1 describes the symbols

used throughout the paper.

https://doi.org/10.1145/3159652.3159722
https://doi.org/10.1145/3159652.3159722


 0

 5000

 10000

 15000

 20000

 25000

0 200M 400M 600M 800M

R
un

ni
ng

 ti
m

e 
(s

)

Number of edges

DLBP
BP-VS
BP-ES

BP-V
BP-E

HA-LFP

o.o.t.
o.o.t.

o.o.t.

o.o.m.
o.o.m.

Figure 1: Running time of DLBP and competing methods on the

subgraphs of YahooWeb (HA-LFP on Hadoop, rest on Spark). DLBP

is up to 10.0× faster than HA-LFP, 10.7× faster than BP-E and BP-V,

and 2.0× faster than BP-ES and BP-VS. o.o.t.: out of time (exceeds 8

hours). o.o.m.: out of memory (a worker node fails).

2.1 Loopy Belief Propagation
Loopy Belief Propagation (LBP) [20, 26] is an inference algorithm

which approximately calculates the marginal distribution of unob-

served variables in a probabilistic graphical model. We focus on

LBP in a pairwise Markov Random Field (MRF) among other prob-

abilistic graphical models to simplify the explanation. A pairwise

MRF is an undirected graphical model consisting of vertices which

represent random variables with a discrete number of states, and

edges which represent the relationships between two variables.

To illustrate the equations of LBP, two concepts need to be intro-

duced. A node potential ϕi (xi ) of a vertex i is the prior knowledge
about the probability distribution of vertex i in the state xi . An
edge potential ψi j (xi ,x j ) is the probability that vertex i has the
state xi and vertex j has the state x j . LBP relies on the notion of

iterative message passing between variables. At each iteration, all

vertices send messages to their neighboring vertices. The algorithm

assumes that a messagemi j successfully captures the influence of

a vertex i on its neighboring vertex j’s marginal probability. The

messagemi j (x j ) from vertex i to vertex j is updated as follows:

mi j (x j ) ←
∑
xi

ϕi (xi )ψi j (xi , x j )

∏
l∈N (i )ml i (xi )

mji (xi )
(1)

where N (i) is the neighbors of vertex i . The belief bi of vertex i is
computed based on the converged messages as follows:

bi (xi ) = ciϕi (xi )
∏

l∈N (i )

ml i (xi ) (2)

where ci is a normalization constant to make the beliefs of vertex

i with different states xi sum up to 1. Note that we can utilize the

belief bi of the current iteration to compute the outgoing messages

mi j from vertex i in the next iteration [17, 18]. Since Equation (1)

uses the multiplication of the node potential ϕi (xi ) and the in-

coming messagesml i (xi ) to vertex i in order to compute the next

iteration messages, we can replace these terms with Equation (2)

which results in:

mi j (x j ) ←
1

ci

∑
xi

ψi j (xi , x j )
bi (xi )
mji (xi )

(3)

Table 1: Table of symbols.

Symbol Definition

mi j message from vertex i to vertex j
bi belief of vertex i
ci normalization constant of vertex i
N (i) set of neighboring vertices of vertex i
V sets of vertices

E sets of edges

Vh , Vs sets of hub and spoke vertices

Ehh , Ess , Ehs , Esh sets of edges from {Vh , Vs } to {Vh , Vs }
Bh , Bs sets of beliefs of Vh , Vs

Mhh , Mss , Mhs , Msh sets of messages of Ehh , Ess , Ehs , and Esh
θ convergence threshold

k hub ratio

τ maximum sub-iterations

Th total number of hub-to-hub iterations

Ts total number of spoke-to-spoke iterations

To total number of super-steps

T number of iterations until standard LBP converges

n number of machines

s number of possible states

2.2 Distributed Graph Processing
In an attempt to solve problems in distributed graph processing, a

variety of graph processing frameworks [6, 12, 19, 21, 24, 29, 30]

have emerged. In those frameworks, graph data are distributed

along multiple machines to promote parallel computing. However,

the distribution of graph data is also a major bottleneck because

of the communication cost between machines. Unfortunately, real-

world graphs are known to contain little well-defined clusters [22].

Partitioning Strategies.Most of the distributed graph process-

ing frameworks adapt either of the two graph partitioning strategies,

edge-cut or vertex-cut. Edge-cut and vertex-cut mainly differ on

which of the two main components of a graph, edges or vertices, are

divided evenly among multiple machines. Edge-cut uniformly as-

signs vertices to multiple machines; hence, the edges are cut across

different machines. In contrast, vertex-cut uniformly distributes

edges to machines; thus, the vertices span over different machines.

It is known that vertex-cut efficiently handles high-degree vertices

in a real-world graph while edge-cut suffers imbalanced workloads

among partitions [6, 12].

PowerLyra [6] utilizes both edge-cut and vertex-cut in parallel

graph processing where one of the two partitioning methods is

selected for a vertex depending on its degree. For high-degree

vertices, vertex-cut is used to promote workload balancing between

partitions. The low-degree vertices are partitioned using edge-cut

which prevents the low-degree vertices from spanning over a large

number of machines.

Parallel Belief Propagation. Different factors of parallel LBP
are analyzed in [25] which still does not consider the property of

real-world graphs. A parallel asynchronous LBP [10, 11, 34] uses

a priority scheme in order to dynamically schedule the message

updates. HA-LFP [18] formulates a MapReduce [7] version of LBP

that runs in parallel on top of Apache Hadoop.

3 PROPOSED METHOD
In this section, we propose Distributed Loopy Belief Propagation

(DLBP), a distributed LBP algorithm on real-world graphs. First, we

give an overview of DLBP in Section 3.1 by describing the problems

associated with LBP on real-world graphs. Next, we elaborate on



each of the main ideas of DLBP through Section 3.2 to Section 3.4.

In Section 3.5, we analyze DLBP in terms of the amount of shuffled

data, time complexity, and memory usage. Section 3.6 presents the

implementation details of DLBP on the Spark platform.

3.1 DLBP: Overview
DLBP is a distributed LBP algorithm that efficiently computes the

beliefs of vertices in real-world graphs. When considering an ef-

ficient parallel computation of LBP in a distributed environment,

there are several challenges that need to be addressed.

(1) Setting convergence criterion. LBP iteratively updates

messages until all messages converge. However, is this “mes-

sage” convergence criterion appropriate for a real-world

graph with high-degree vertices?

(2) Minimizing numerical computations. How can we min-

imize the overall computations of messages and the total

number of iterations until convergence?

(3) Minimizing network communication cost. Real-world
graphs are known to have highly-skewed degree distribu-

tion. With this property in mind, how can we partition a

real-world graph and arrange the message computations to

minimize the data communication between machines?

We tackle the problems mentioned above with the following

main ideas, which are described in detail in later subsections.

(1) Using “belief” as convergence criterion (Section 3.2).
We show that the message-based stopping criterion is insuf-

ficient to guarantee the convergence of further iterations,

especially for real-world graphs with high-degree vertices.

(2) Skipping of converged vertices (Section 3.3).DLBP skips
the computations of outgoing messages from converged ver-

tices due to its belief convergence criterion. As a result, we

minimize redundant message computations and promote

faster convergence.

(3) Reducing full shuffling of graphdata (Section 3.4).DLBP
focuses on the high-degree vertices which require more num-

ber of iterations to converge than low-degree vertices. This

idea reduces the amount of data shuffling.

3.2 DLBP: Belief Convergence Criterion
DLBP checks the convergence of beliefs instead of messages as the

stopping criterion to overcome the shortcoming of message-based

approach on real-world graphs. It is important to note that the

beliefs, not messages, are the desired output of LBP; therefore, the

reliability of resulting beliefs is the most crucial factor. In this con-

text, we show that the convergence of messages in two consecutive

iterations neither guarantees 1) the convergence of beliefs nor 2)

the convergence of messages in the next iteration. Then, we present

the belief convergence criterion and demonstrate its superiority

over its counterpart.

When the “message” convergence criterion is used, LBP itera-

tively computes the messages until the following inequality holds

for all messagesmt−1
i j of previous iteration t − 1 and messagesmt

i j
of current iteration t :

∥mt
i j −m

t−1
i j ∥∞ ≤ θ (4)

where θ ≥ 0 is a small constant, and ∥x ∥∞ denotes the largest

absolute value of a vector x . However, high-degree vertices (which
we refer to as hubs) in real-world graphs impede the stability of

the message convergence criterion as we show in this subsection.

We use the approximate equations of Linearized BP proposed in

[9] to give the condition where themessage convergence criterion is

problematic. Using the following definitions, Linearized BP utilizes

Maclaurin series expansions to replace multiplications in Equations

(1), (2), and (3) with summations.

Definition 1 (Centering [9]). We call a vector x is centered
around c if the average of all elements of x is exactly c , and each
element deviates from c only by a small value.

Definition 2 (Residual Value [9]). When there is a vector x
which is centered around c , the residual value x̂i of the ith element xi
is defined as the deviation of xi from c; that is, x̂i = xi − c .

The modified equations of Linearized BP are expressed using

the residual values, which are Equations (5), (6) and (7). We denote

the residual values of beliefs, messages, node potentials, and edge

potentials by
ˆbi (xi ), m̂i j (x j ), ˆϕi (xi ), and ˆψi j (xi ,x j ), respectively.

m̂i j (x j ) ← s
∑
xi

ˆψi j (xi , x j ) ˆϕi (xi ) +
∑
xi

∑
l∈N (i )\j

ˆψi j (xi , x j )m̂l i (xi ) (5)

ˆbi (xi ) = ˆϕi (xi ) +
1

s

∑
l∈N (i )

m̂l i (xi ) (6)

m̂i j (x j ) ← s
∑
xi

ˆψi j (xi , x j ) ˆbi (xi ) −
∑
xi

ˆψi j (xi , x j )m̂ji (xi ) (7)

where s is the number of possible states xi , and N (i) \ j is the set
of vertices neighboring vertex i except vertex j.

Using these equations, we give an upper bound to the difference

of belief bi (xi ) between two consecutive iterations under the con-

dition that all incoming messagesml i to vertex i have converged.
The result is in Lemma 1.

Lemma 1. The convergence of incoming messages to a high-degree
vertex i does not guarantee the convergence of its belief.

Proof. We compute the difference of belief bi (xi ) between two

consecutive iterations using Equation (6). Since all incoming mes-

sagesml i (xi ) have converged, we use the inequality |△m̂l i (xi )| ≤ θ
to give an upper bound of the value.

|△bi (xi )| =

����1s ∑
l ∈N (i)

△m̂l i (xi )

���� ≤ 1

s

∑
l ∈N (i)

θ =
1

s
|N (i)|θ

where |N (i)| is the degree of vertex i . Since |△bi (xi )| ≤
1

s |N (i)|θ ,
there is no guarantee |△bi (xi )| is within a small value when |N (i)|
is sufficiently large. □

Next, we solve the inequality in Equation (4) for an outgoing

messagemi j (x j ) from vertex i under the same condition as above

to get Lemma 2.

Lemma 2. The convergence of incoming messages does not guar-
antee the convergence of outgoing messages when a high-degree vertex
i fails to satisfy the following inequality:

|N (i)| ≤
1

s ·max( ˆψi j (xi ,x j ))
+ 1



Proof. We compute the difference of the outgoing message

mi j (x j ) between previous and current iterations by substituting the

message terms with Equation (5). Similar to the proof in Lemma 1,

we use the inequality |△m̂l i (xi )| ≤ θ to give an upper bound of the

value. We use max( ˆψi j (xi ,x j )) to denote the largest absolute value

among the residuals of edge potentials.

|△mi j (x j ) | =
����∑
xi

∑
l∈N (i )\j

ˆψi j (xi , x j ) · △m̂l i (xi )
����

≤
∑
xi

∑
l∈N (i )\j

max( ˆψi j (xi , x j )) · θ

= s( |N (i) | − 1) ·max( ˆψi j (xi , x j )) · θ

Since |△mi j (x j )| is within the convergence threshold θ , we get the
convergence criterion as:

|△mi j (x j )| ≤ s(|N (i)| − 1) ·max( ˆψi j (xi ,x j )) · θ ≤ θ

By canceling out θ and rearranging the terms, we get the inequality

in Lemma 2. □

Note that s is a constant value and max( ˆψi j (xi ,x j )) depends on
the edge potential values. Therefore, Lemma 2 indicates that if a

vertex i has a degree |N (i)| higher than some constant value, there

is no guarantee that its outgoing messages will converge even after

its incoming messages have converged.

A reasonable solution to this problem would be to introduce

an alternative convergence criterion that mitigates the problem,

which is to use beliefs instead of messages. When using “belief”

convergence criterion, LBP stops when the following inequality

holds for all beliefs bi of two consecutive iterations:

∥bti − b
t−1
i ∥∞ ≤ θ (8)

This condition directly leads to the following lemma.

Lemma 3. The belief convergence criterion guarantees the conver-
gence of all beliefs.

Next, we analyze the belief convergence criterion on the conver-

gence of outgoing messages. By once more utilizing the Linearized

BP equations, we get Lemma 4.

Lemma 4. The convergence of the beliefs of adjacent vertices i
and j restricts the difference of message between them in consecutive

iterations within a small value: |△mi j (x j )| ≤
s2 ·max( ˆψi j (xi ,x j ))
1−s ·max( ˆψi j (xi ,x j ))

θ

Proof. We compute the difference of the outgoing message

mi j (x j ) by utilizing Equation (7). We give an upper bound by the

inequality |△ ˆbi (xi )| ≤ θ .

|△mi j (x j ) | =
����s ∑

xi

ˆψi j (xi , x j )△ ˆbi (xi ) −
∑
xi

ˆψi j (xi , x j )△mji (xi )
����

≤ s
∑
xi

max( ˆψi j (xi , x j )) · θ +
∑
xi

max( ˆψi j (xi , x j )) |△mji (xi ) |

= s ·max( ˆψi j (xi , x j )) · (sθ + |△mji (xi ) |)

Since the same conditions apply to |△mji (xi )|, we get a symmetric

inequality |△mji (xi )| ≤ s · max( ˆψi j (xi ,x j )) · (sθ + |△mi j (x j )|). By
solving these two inequalities and rearranging the terms, we get

the inequality in Lemma 4. □

We compare these two convergence criteria by introducing an

example. Let’s suppose there is a pairwise MRF whose vertices

have two possible states, and we set edge potentials to 0.51 for the

case where adjacent vertices have the same state and 0.49 for the

opposite case. First, we examine the message convergence criterion

by plugging the values s = 2 and max( ˆψi j (xi ,x j )) = 0.01 to the

inequality in Lemma 2:

|N (i)| ≤
1

2 · 0.01
+ 1 = 51

For high-degree vertices with degree |N (i)| > 51, the convergence

of their incoming messages does not guarantee the convergence

of their outgoing messages. On the other hand, when we use the

belief convergence criterion, the following guarantee holds on the

messages between converged vertices i and j regardless of their

degrees: |△mi j (x j )| ≤
2
2 ·0.01

1−2·0.01θ ≈ 0.0408 · θ .

3.3 DLBP: Skipping of Converged Vertices
DLBP reuses outgoing messagesmi j of the previous iteration if the

belief of their source vertex i satisfies the inequality in Equation

(8). LBP-based algorithms using the message convergence crite-

rion cannot safely skip the computation of outgoing messages of

converged vertices because of Lemma 2. DLBP utilizes the belief

convergence criterion which provides a more reliable standard for

checking the convergence of a vertex. Thus, DLBP skips the com-

putation of outgoing messages from vertices that have converged

at the previous iteration with more reliability.

The obvious advantage of reusing the outgoing messages of con-

verged vertices is that it omits the redundant computations. More

importantly, skipping the computations also reduces the number

of iterations required until all beliefs converge because it allows

the algorithm to ignore very small errors of outgoing messages.

The latter advantage contributes significantly in reducing the total

running time of LBP algorithm. We easily see this by looking at the

time complexity of LBP on graphs with cycles, which is given by

Lemma 5.

Lemma 5 (Time Complexity of LBP [2]). The time complexity
of LBP on a graph G = (V ,E) with cycles is O(|E |T ), where V is the
set of vertices, E is the set of edges, and T is the number of iterations
required until all beliefs converge.

3.4 DLBP: Hub-oriented Scheduling
We propose a hub-oriented scheduling, which DLBP uses to min-

imize the shuffled data when applying LBP in a distributed envi-

ronment. The main idea is to focus on achieving the convergence

of hubs and then propagate the messages to low-degree vertices

(which we refer to as spokes). First, DLBP performs pre-processing

to partition data based on hubs and spokes (Algorithm 1). Then the

algorithm iterates carefully designed super-steps until all beliefs

converge (Algorithm 2). Each super-step consists of four different

sub-steps: hub-to-hub iteration, hub-to-spoke propagation, spoke-

to-spoke iteration, and spoke-to-hub propagation. The objective of

hub-oriented LBP is to minimize the full data shuffling by reducing

the number of super-steps required until convergence.

3.4.1 Preprocessing Stage (Algorithm 1). In preprocessing stage,

we introduce the hub ratio parameter 0 ≤ k ≤ 1 to divide the



Algorithm 1: DLBP Preprocessing Stage

Input: vertex set V , edge set E , node potential set ϕ , and hub ratio k
Output: message sets Mhh , Msh , Mhs , Mss ,

belief sets Bh , Bs and node potential sets ϕh , ϕs
1: compute the degrees of all vertices in V
2: divide V into Vh , Vs according to vertices’ degrees and k
3: divide ϕ into ϕh , ϕs with respect to Vh , Vs
4: initialize all beliefs B to

1

s where s is the number of states

5: divide B into Bh , Bs with respect to Vh , Vs
6: divide E into Ehh , Ess , Ehs , Esh according to their sources

and destinations

7: initialize all messages M to 1

8: divide message set M into Mhh , Mss , Mhs , Msh with respect to

Ehh , Ess , Ehs , Esh
9: return ϕh , ϕs , Bh , Bs , and Mhh , Msh , Mhs , Mss

vertices into hubs and spokes (lines 1 to 2). For example, if k = 0.3,

then 30% of the vertices with the highest degrees are selected as

hubs while the rest 70% become spokes.Vh andVs represent the sets
of hubs and spokes, respectively. Since each node potential ϕi is
associated with a vertex i , the node potentials are also divided into

two separate sets, ϕh and ϕs , where boldfaced ϕ denotes the set of

all node potentials (line 3). In addition, we divide the beliefs into

two sets, Bh and Bs (lines 4 to 5). Likewise, we divide the edges into
four different sets according to their sources and destinations (line

6). Ehh , Ess , Ehs , and Esh denote the sets of edges whose source

and destination are both hubs, both spokes, hub to spoke, and spoke

to hub, respectively. Mhh , Mss , Mhs , and Msh are their affiliated

message sets (lines 7 to 8). In the end, we have two subgraphs

Gh = (Vh ,Ehh ) and Gs = (Vs ,Ess ), and two intermediate sets of

edges, Ehs and Esh , that span over the two subgraphs (line 9).

We adapt the hybrid partitioning method from [6] and use differ-

entiated partitioning strategies for the two subgraphs. The subgraph

Gh of hubs is partitioned using vertex-cut to achieve balanced work-

load among machines while edge-cut is used for the subgraph Gs
of spokes. For the vertex-cut, we use a 2d hash partitioner [3, 13] to

limit the maximum number of machines over which a vertex spans.

The intermediate edges, Ehs and Esh , use edge-cut to group them

by their destination vertices.

3.4.2 Main Stage (Algorithm 2). In main stage, DLBP carefully

schedules the iterative message update steps in LBP according to

the subgraphs, Gh and Gs , and intermediate edges, Ehs and Esh .
Since the subgraph of hubs is known to form a more dense graph

than spokes [23], DLBP focuses on the subgraphGh to promote the

faster convergence of hubs and reduce the total number of super-

steps until convergence. Each super-step of DLBP consists of two

sub-iteration steps and two intermediate propagation steps: hub-to-

hub iteration, hub-to-spoke propagation, spoke-to-spoke iteration,

and spoke-to-hub propagation. DLBP iterates the super-steps until

all beliefs satisfy the belief convergence criterion.

Hub-to-Hub Iteration (line 2 & Algorithm 3). In hub-to-hub

iteration, we iteratively updateMhh , instead of all messages, until

the belief convergence criterion holds for all beliefs in Bh . However,
the naive approach to fully iterate themessage updates until the con-

vergence of BH suffers from wasteful computations. Even though

the hubs converged at current super-step, the information received

Algorithm 2: DLBP Main Stage

Input: vertex sets Vh , Vs , node potential sets ϕh , ϕs ,
belief sets Bh , Bs , message sets Mhh , Msh , Mhs , Mss ,

edge potentials ψi j , and maximum inner iterations τ
// Note that ci is a normalization constant

Output: beliefs B of all vertices

1: while Bh ∪ Bs not converged do
2: Bh ← Sub-iteration(Vh , ψi j , τ , Bh , Mhh , ϕh , Msh )

3: Mhs ←
1

ci

∑
xi ψi j (xi , x j )

bi (xi )
mji (xi )

using Msh and Bh
4: Bs ← Sub-iteration(Vs , ψi j , τ , Bs , Mss , ϕs , Mhs )

5: Msh ←
1

ci

∑
xi ψi j (xi , x j )

bi (xi )
mji (xi )

using Mhs and Bs
6: end while
7: return B

Algorithm 3: Sub-iteration(·) for Main Stage

Input: vertices V , edge potentials ψi j , maximum inner iterations τ ,
∀v ∈ V : beliefs Bv , messages Mvv , node potentials ϕv ,
∀x < V and ∀v ∈ V : messages Mxv

Output: beliefs Bv
1: pi (xi ) ← ϕi (xi )

∏
l∈N (i )\V ml i (xi ) for ∀i ∈ V using ϕv

2: while (Bv not converged) & (less than τ iterations) do
3: Bv ← cipi (xi )

∏
l∈N (i )∩V ml i (xi )

4: Mvv ←
1

ci

∑
xi ψi j (xi , x j )

bi (xi )
mji (xi )

5: end while
6: return Bv

from spokes breaks the convergence of hubs in the next super-

step. Then we need to re-compute Mhh until they re-converge,

where some of these computations might be inefficient in terms

of approaching toward a global stationary point. To alleviate the

problem, we introduce a parameter τ that restricts the maximum

number of sub-iterations in hub-to-hub iteration. τ controls the

trade-off between the information gained by the sub-iteration and

the deviation of the converged values from the global optimum.

Since ϕh and Msh have constant values at each hub-to-hub it-

eration, we compute the multiplication of these values in advance

to avoid redundant computations. More precisely, we compute the

multiplication of constant node potential and incoming messages

of vertex i as pi (xi ) = ϕi (xi )
∏

l ∈N (i)\Vh ml i (xi ). N (i) \Vh denotes

the set of neighboring vertices of vertex i , which are not hubs. Then,
the belief bi (xi ) of a hub i is computed as follows:

bi (xi ) = ciϕi (xi )
∏

l ∈N (i)

ml i (xi ) = cipi (xi )
∏

l ∈N (i)∩Vh

ml i (xi )

This equation resembles Equation (2), except that the term ϕi (xi )
is replaced by pi (xi ). Using this equation, onlyMhh and the set of

pi (xi ) for i ∈ Vh are required to compute Bh .
Hub-to-Spoke Propagation (line 3). After Bh converges, we

compute Mhs which transfer the accumulated information from

hubs to spokes. Note that only one step of full computations ofMhs
is sufficient to fully propagate the accumulated information from

hubs to spokes because Bh of the last hub-to-hub iteration is used

to updateMhs .

Spoke-to-Spoke Iteration (line 4 & Algorithm 3). In spoke-

to-spoke iteration, the only two differences from the hub-to-hub

iteration are that 1)Mss is updated instead ofMhh , and 2) Bs is used
to check the convergence of beliefs. Similar to that of hub-to-hub

iteration, we compute the set of pi (xi ) = ϕi (xi )
∏

l ∈N (i)\Vs ml i (xi )



for i ∈ Vs before the iteration. It is noteworthy to mention that each

spoke-to-spoke iteration converges within 1-3 steps in real-world

graphs, which accords with our intuition that hubs are accountable

for most of the iterations until an LBP algorithm converges.

Spoke-to-HubPropagation (line 5).We computeMsh to prop-

agate the updated information of spokes to hubs.

3.5 Analysis of DLBP
We analyze DLBP with respect to the amount of shuffled data, time

complexity, and memory usage. We use the following symbols to

represent each factor: n (number of machines), To (total number of

super-step iterations),Th (total number of hub-to-hub iterations),Ts
(total number of spoke-to-spoke iterations),T (number of iterations

until standard LBP converges). Note that the equation |Ehs | = |Esh |
always holds since the outgoing and incoming edges are symmetric.

3.5.1 Amount of Shuffled Data. We present the main result

Lemma 9 which is supported by Lemmas 6, 7, and 8.

Lemma 6. The amount of shuffled data in each loop of hub-to-hub
iteration (lines 2 to 5 in Algorithm 3 called by line 2 in Algorithm 2)
is O(
√
n |Vh |).

Proof. DLBP partitions the subgraph Gh = (Vh ,Ehh ) using
vertex-cut; thus, a vertex spans across at most 2

√
n number of ma-

chines using a 2d hash partitioner [13]. First step is to aggregate

the messages inMhh by their destination vertices in order to com-

pute Bh . Since the messages are initially aggregated within each

machine before shuffling, the amount of shuffled data is O(
√
n |Vh |).

Next step is to update Mhh , which requires Bh to be distributed

across at most 2

√
nmachines. This also results inO(

√
n |Vh |) shuffled

data. Consequently, the amount of shuffled data for one hub-to-hub

iteration is O(
√
n |Vh |). □

Lemma 7. The amount of shuffled data in each loop in spoke-
to-spoke iteration (lines 2 to 5 in Algorithm 3 called by line 4 in
Algorithm 2) is O(|Ess |).

Proof. DLBP partitions the subgraphGs = (Vs ,Ess ) using edge-
cut which assigns edges to machines according to their destinations.

Thus, no shuffling is required when computing Bs andMss . How-

ever, the directions of newly updated messages inMss are inverted

(source and destination are flipped) according to Equation (3). It is

necessary to re-group the edges according to their new destinations,

which requires the shuffling of O(|Ess |) data. □

Lemma 8. The amount of shuffled data in each super-step except
the loops in sub-iterations (line 1 in Algorithm 3, and lines 3 and 5 in
Algorithm 2) is O(|V | + |Ehs |)

Proof. When we consider hub-to-hub iterations, we compute

the multiplication of ϕh andMsh in line 1 (Algorithm 3). Since the

edges in Esh are partitioned by edge-cut, no shuffling happens when

multiplying messages inMsh . However, we still need to multiply

the multiplications of messages with ϕh , where the shuffled data is

O(|Vh |). Note that Algorithm 3 is reused for both hubs and spokes.

In line 3 (Algorithm 2), there are two parts that we need to consider.

First, we distribute the beliefs in Bh according to the destinations

ofMsh to computeMhs , which require O(|Vh |) data to be shuffled.

Then, we need to re-partition the updatedMhs according to their

destination vertices which requires O(|Ehs |) of shuffled data. The

computation in line 3 (Algorithm 2) is symmetric with respect

to hubs and spokes; line 5 is its counterpart. Therefore, the total

amount of shuffled data in each super-step except the loops in

sub-iterations is O(|V | + |Ehs |). □

Lemma 9. The total amount of shuffled data of DLBP until all
beliefs B converge is as follows:

O((|V | + |Ehs |)To +
√
n |Vh |Th + |Ess |Ts )

Proof. The equation is derived by a straightforward application

of Lemmas 6, 7, and 8. □

Since To ≤ Ts < Th ≈ T holds in most cases (see Table 5), DLBP

effectively reduces the amount of shuffled data compared to that

of LBP. We easily show this by dividing the equation in Lemma 9

by the amount of shuffled data of standard LBP using vertex-cut

with n machines, which is O(
√
n |V |T ) [13]. Under the condition

thatTo ≤ Ts ≪ Th ≈ T , the shuffled data of DLBP is approximately

k times smaller than that of LBP as follows, where k is the hub

ratio:

(|V | + |Ehs |)To
√
n |V |T

+

√
n |Vh |Th
√
n |V |T

+
|Ess |Ts
√
n |V |T

≈

√
n |Vh |Th
√
n |V |T

≈
|Vh |

|V |
= k

The above simplification is based on the assumption that |V | +
|Ehs | and |Ess | are less than or equal to

√
n |V |, which is reasonable

when n is sufficiently large.

3.5.2 Time Complexity.

Lemma 10. The time complexity of DLBP is as follows:

O

(
Th |Ehh | +Ts |Ess | +To |Ehs |

n

)
Proof. Since hub-to-hub iterations are identical to applying

LBP on a subgraph Gh = (Vh ,Ehh ) where pi (xi ) resembles the

node potential ϕi (xi ), the time complexity is O(Th |Ehh |) on a sin-

gle machine according to Lemma 5. When we use n machines to

synchronously compute themessages, the time complexity becomes

O(Th |Ehh |n ). A similar justification applies for spoke-to-spoke itera-

tions where the time complexity is O(Ts |Ess |n ). The computations

of messages in Mhs and Msh simulate LBP algorithm on a bipar-

tite graph Gh = (Vh ∪Vs ,Ehs ∪ Esh ); thus, the time complexity is

O(To |Ehs |n ). By summing up these terms, we prove the lemma. □

When compared to the time complexity of standard LBP,O(T |E |n ),

DLBP reduces the complexity under the condition that To ≤ Ts ≪
Th ≈ T . It is because |E | = |Ehh | + |Ess | + 2|Ehs |; thus, Th |Ehh | +
Ts |Ess | +To |Ehs | < T |E | always holds true.

3.5.3 Memory Usage.

Lemma 11. DLBP requires at most the memory space of:
O(max(|Ehh | + |Vh |, |Ehs | + |Vh |, |Esh | + |Vs |, |Ess | + |Vs |))

Proof. At each sub-step, we only need the memory space for

the message set and the belief set associated with the sub-step. Thus,

DLBP occupies up to the maximum memory space requirement

among the sub-steps because unused data at current sub-step are

stored in a secondary storage. □

The memory requirement of DLBP is always less than that of

standard LBP since |V | = |Vh |+ |Vs | and |E | = |Ehh |+ |Ess |+2|Ehs |.



Table 2: Summary of the datasets.

Dataset Labeled Nodes Edges

YahooWeb-250M 13,463,596 174,577,088 776,375,840

YahooWeb-225M 11,649,829 151,082,221 627,242,209

YahooWeb-200M 9,806,416 128,663,268 494,471,965

YahooWeb-175M 8,146,152 106,656,291 376,985,487

YahooWeb-150M 6,456,257 85,309,472 275,133,522

YahooWeb-125M 4,906,727 65,829,290 190,485,192

YahooWeb-100M 3,517,351 47,141,314 121,566,975

YahooWeb-75M 2,319,233 30,731,733 68,492,600

YahooWeb-50M 1,264,080 16,402,838 30,403,395

Campaigns 12,059 23,191 877,729

PubMed 19,717 19,717 88,651

PolBlogs 991 1,224 16,716

3.6 Implementation
In this section, we present the implementation details of DLBP on

Apache Spark [36, 37]. Note that DLBP can be implemented on

any other distributed system which supports synchronous data

processing. First, we store messages and node potentials as two

separate Resilient Distributed Datasets (RDDs). Then, we divide

RDDs according to the hub ratio k using filter operations. Each of

the divided RDDs is partitioned by the partitionBy function with a

customized partitioner which corresponds to either vertex-cut or

edge-cut. Next, the aggregateByKey operation computes beliefs, and

the join operation is used to check their convergence. Last, hub-to-

hub message RDD partitioned by vertex-cut uses the zipPartitions
function, which preserves the previous partitioning, to compute

new messages while other message RDDs partitioned by edge-cut

use the join function.

4 EXPERIMENTS
In this section, we evaluate the experimental results of DLBP. We

answer the following questions:

• Q1: Accuracy (Section 4.2).Do the skipping technique and
the hub-oriented scheduling of DLBP affect the accuracy of

computed beliefs?

• Q2: Speed (Section 4.3). How quickly does DLBP compute

the beliefs compared to baseline LBP algorithms?

• Q3: Effect of parameters k and τ (Section 4.4). How do

the hub ratio k and the maximum sub-iterations τ affect the

performance of DLBP in terms of speed?

• Q4: Machine Scalability (Section 4.5). How does DLBP

scale up with respect to the number of machines?

4.1 Experimental Settings
Datasets.We use 4 datasets summarized in Table 2. Campaigns

1
is

a graph of political committees and candidates with two possible

states, where the edges represent donations. PolBlogs
2
[1] is a

graph of hyperlinks where each vertex represents a web blog on

US politics with two possible states. PubMed
3
is a citation graph

where each vertex is a research paper with three possible categories.

YahooWeb
4
is a web page hyperlink graph where labeled web pages

1
http://www.cs.cmu.edu/∼mmcgloho/data.html

2
http://www-personal.umich.edu/∼mejn/netdata/

3
http://linqs.cs.umd.edu/projects/projects/lbc/index.html

4
http://webscope.sandbox.yahoo.com/

Table 3: Edge potential values for homophilic graphs.

(a) Two states.

State 1 2

1 0.501 0.499

2 0.499 0.501

(b) Three states.

State 1 2 3

1 0.334 0.333 0.333

2 0.333 0.334 0.333

3 0.333 0.333 0.334

Table 4: Classification accuracy of the algorithms using 5-fold

cross validation. There is no meaningful difference between the

algorithms; however, DLBP is much faster than competitors as

described in Section 4.3.

Dataset BP-E BP-V BP-ES BP-VS DLBP

Campaigns 89.36% 89.36% 89.31% 89.31% 89.31%

PolBlogs 95.62% 95.62% 95.62% 95.62% 95.62%

PubMed 82.65% 82.65% 82.79% 82.79% 82.65%

are either educational or adult pages. To make various real-world

graphs with different sizes, we sample principal submatrices from

the adjacency matrix of YahooWeb graph. For instance, YahooWeb-

50M is the subgraph of YahooWebwhere the dimensions of principal

submatrix is 50M × 50M.

Note that these graphs are appropriate for LBP since they meet

the homophily assumption. In particular, political groups are strongly

connected to those with the same political opinion; research papers

typically cite other papers within the same area; and educational

web pages have links to other educational web pages, not adult web

pages. The edge potential values are given by Table 3. The node

potentials of labeled vertices are set to 0.9 for the correct label while

other incorrect labels get a value that equally splits the remaining

0.1. Node potentials of unlabeled vertices have a uniform value
1

s
for each state, where s is the number of possible states.

Methods. We evaluate our proposed DLBP compared to two

baseline LBP algorithms based on edge-cut and vertex-cut (BP-E

and BP-V). Moreover, we implement two additional LBP algorithms

that improve BP-E and BP-V by utilizing the skipping technique

introduced in Section 3.3 (BP-ES and BP-VS). The purpose of imple-

menting BP-ES and BP-VS is to analyze the effects of the skipping

technique on accuracy and speed. Lastly, DLBP uses both the skip-

ping technique and the hub-oriented scheduling. All five algorithms

are implemented on the Spark platform for a fair comparison, and

use the belief convergence criterion with threshold θ = 10
−4
. The

algorithms stop when the belief convergence criterion is met or

total number of iterations exceeds 200.

We also evaluate DLBP compared to HA-LFP [18], a parallel LBP

algorithm implemented on Apache Hadoop [7, 32]. Since HA-LFP

requires users to manually choose the number of iterations, we give

the number of iterations that BP-E and BP-V took to converge.

Environment Setting.We use Spark, a general data processing

platform on distributed environment, to implement DLBP and four

baseline algorithms mentioned above. We use the original code of

HA-LFP provided by the authors of [18] and test on Apache Hadoop.

The experiments were conducted on a cluster with 17 machines

where each machine has a 32GB RAM and an Intel Xeon E3-1240

3.5GHz CPU with 4 cores. We configure Spark to run its application

on the cluster using one machine as the driver node and the rest as

the worker nodes where each node uses 24GB free memory.



 1000

 1500

 2000

 2500

 3000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35
 0

 30

 60

 90

 120

R
un

ni
ng

 ti
m

e 
(s

)

T
ot

al
 N

um
be

r 
of

 It
er

at
io

ns

DLBP (Time)
Hub-to-Hub (Th)

Spoke-to-Spoke (Ts)
Super-step (To)

τ = 8 (fixed)

(a) Hub Ratio k .

 1000

 1500

 2000

 2500

 3000

 0  5  10  15  20  25
 0

 25

 50

 75

 100

R
un

ni
ng

 ti
m

e 
(s

)

T
ot

al
 N

um
be

r 
of

 It
er

at
io

ns

DLBP (Time)
Hub-to-Hub (Th)

Spoke-to-Spoke (Ts)
Super-step (To)

k = 0.1 (fixed)

(b)Maximum Sub-iterations τ

Figure 2: Effects of the hub ratio k and the maximum sub-iterations τ on the performance of

DLBP. We use YahooWeb-125M dataset to evaluate the different processing time according to the

parameters. Note that the running time of DLBP is minimized when k = 0.1 and τ = 8.

 2

 4

 6

 8

 10

 2 12  14  16

S
ca

le
 u

p 
(T

1 
/ T
n)

DLBP

6 4
Number of machines (n)

8 10

Figure 3: Running times of DLBP on

YahooWeb-50M using different num-

ber of machines. DLBP demonstrates

near-linear scaling with respect to the

number of machines.

4.2 Accuracy (Q1)
We use vertex classification problem to measure the accuracy of the

algorithms. The goal is to classify each vertex by assigning the label

with the highest belief. We use 5-fold cross validation to ensure that

we correctly estimate the accuracy of each algorithm. In addition,

we balance the number of labeled vertices per label according to

the label with the minimum number of labeled vertices.

We compare the classification accuracies of BP-ES, BP-VS, and

DLBP to the baseline algorithms, BP-E and BP-V. Table 4 shows

the classification results on each dataset. BP-ES, BP-VS, and DLBP

show almost identical accuracies with the baseline algorithms on

all the datasets. Note that the difference between the accuracies

of two different methods is always less than 0.14%. Nevertheless,

DLBP is much faster than competitors as we present in Section 4.3.

4.3 Speed (Q2)
We compare the running time of BP-ES, BP-VS, and DLBP with

those of the baseline algorithms and HA-LFP. Since other datasets

are too small to be a meaningful comparison of the speed of the

algorithms, we use the subgraphs of YahooWeb to measure the

running time. We measure the wall-clock time which includes the

running time of the preprocessing stage of DLBP. Figure 1 presents

the running time of each algorithm with regard to the number of

edges. DLBP is up to 10.0× faster than HA-LFP, 10.7× faster than

BP-E and BP-V, and even 2.0× faster than BP-ES and BP-VS. Table 5

demonstrates the number of sub-iterations and super-steps of DLBP

until all beliefs converge. It shows that the number of super-steps

of DLBP is significantly less than those of BP-ES and BP-VS.

4.4 Effects of Parameters in DLBP (Q3)
We analyze the effects of the hub ratio k and the maximum sub-

iterations τ in terms of running time. Figures 2a and 2b present the

running time of DLBP with varying parameters. While we evaluate

the effect of one parameter, we fix the other parameters to their

optimal values. Thus, τ = 8 in Figure 2a and k = 0.1 in Figure 2b.

As shown in Figure 2a, DLBP takes more super-steps To until

convergence when k is too small. It also causes the number of sub-

iterations, Th and Ts , to increase as well. On the other hand, large

k does not affect the total number of iterations but rather increases

the size of subgraph Gh = (Vh ,Ehh ), resulting in longer execution

time. In Figure 2b, the number of super-steps until convergence

Table 5: Number of total sub-iterations and super-steps in DLBP

on the subgraphs of YahooWeb. T denotes the number of iterations

until BP-ES and BP-VS converge. The number of super-steps To in

DLBP is much less than T on all datasets. Note that Th has a value

close to T , and Ts has a value close to To . k and τ are the values of

hub ratio and maximum sub-iterations used in DLBP, respectively.

Dataset k τ Th Ts To T

YahooWeb-50M 0.05 3 14 4 4 12
YahooWeb-75M 0.05 3 9 5 5 13
YahooWeb-100M 0.1 4 16 9 7 16
YahooWeb-125M 0.1 8 37 7 7 39
YahooWeb-150M 0.1 10 51 12 8 50
YahooWeb-175M 0.15 10 72 10 10 77
YahooWeb-200M 0.15 10 59 9 9 54
YahooWeb-225M 0.2 10 85 13 13
YahooWeb-250M 0.25 10 86 12 12

increases when τ is very small, which results in longer running time.

When τ = 1, DLBP simulates the standard LBP where each iteration

endures full shuffling of graph data. On the contrary, the number of

hub-to-hub iterations increases as τ grows past the optimum value.

As a result, the redundant computations in hub-to-hub iteration

increase accordingly, an effect we mentioned in Section 3.4.

4.5 Machine Scalability (Q4)
We measure the machine scalability by measuring the running

time of DLBP on YahooWeb-50M while increasing the number of

machines from 1 to 16. Figure 3 illustrates the machine scalability

in terms of speed up T1/Tn where Tn is the running time using n
machines. DLBP gains 9.46× speed up as the number of machines

increases from 1 to 16.

5 CONCLUSION
We propose DLBP, a fast and scalable distributed loopy belief prop-

agation method. DLBP enhances the standard LBP algorithm by

overcoming the challenges associated with the skewed degree dis-

tribution of large real-world graphs. DLBP exploits a convergence

criterion better suited for real-world graphs, and carefully sched-

ules computations for better performance. Experimental results

demonstrate that DLBP minimizes the communication cost of LBP

and provides up to 10.7× speed up on real-world graphs without

sacrificing the classification accuracy.



ACKNOWLEDGMENT
This work was supported by the National Research Foundation

of Korea(NRF) funded by the Ministry of Science, ICT and Future

Planning(NRF-2015K1A3A1A14021055). U Kang is the correspond-

ing author.

REFERENCES
[1] Lada A. Adamic and Natalie Glance. 2005. The Political Blogosphere and the 2004

U.S. Election: Divided They Blog. In Proceedings of the 3rd International Workshop
on Link Discovery (LinkKDD ’05). 36–43.

[2] Ron Bekkerman, Mikhail Bilenko, and John Langford. 2011. Scaling up machine
learning: Parallel and distributed approaches. Cambridge University Press.

[3] Ümit V. Çatalyürek, Cevdet Aykanat, and Bora Uçar. 2010. On Two-Dimensional

Sparse Matrix Partitioning: Models, Methods, and a Recipe. SIAM J. Scientific
Computing 32, 2 (2010), 656–683.

[4] Duen Horng Chau, Shashank Pandit, and Christos Faloutsos. 2006. Detecting

Fraudulent Personalities in Networks of Online Auctioneers. In Knowledge
Discovery in Databases: PKDD 2006. Springer BerlinHeidelberg, Berlin, Heidelberg,
103–114.

[5] Duen Horng Polo Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright, and

Christos Faloutsos. 2013. Polonium: Tera-Scale Graph Mining and Inference for

Malware Detection. In Proceedings of the 2011 SIAM International Conference on
Data Mining. Society for Industrial and Applied Mathematics, Philadelphia, PA,

131–142.

[6] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: differ-

entiated graph computation and partitioning on skewed graphs. In Proceedings
of the Tenth European Conference on Computer Systems, EuroSys 2015, Bordeaux,
France, April 21-24, 2015. 1:1–1:15.

[7] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[8] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. 2006. Efficient Belief Prop-

agation for Early Vision. International Journal of Computer Vision 70, 1 (2006),

41–54.

[9] Wolfgang Gatterbauer, Stephan Günnemann, Danai Koutra, and Christos Falout-

sos. 2015. Linearized and Single-Pass Belief Propagation. PVLDB 8, 5 (2015),

581–592.

[10] Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. 2009. Residual Splash

for Optimally Parallelizing Belief Propagation. In Proceedings of the Twelfth
International Conference on Artificial Intelligence and Statistics, AISTATS 2009,
Clearwater Beach, Florida, USA, April 16-18, 2009. 177–184.

[11] Joseph Gonzalez, Yucheng Low, Carlos Guestrin, and David R. O’Hallaron. 2009.

Distributed Parallel Inference on Large Factor Graphs. In UAI 2009, Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal,
QC, Canada, June 18-21, 2009. 203–212.

[12] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.

In 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012. 17–30.

[13] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.

Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed

Dataflow Framework. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14). 599–613.

[14] Jiwoon Ha, Soon-Hyoung Kwon, Sang-Wook Kim, Christos Faloutsos, and Sunju

Park. 2012. Top-N recommendation through belief propagation. In 21st ACM
International Conference on Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012. 2343–2346.

[15] Min-Hee Jang, Christos Faloutsos, Sang-Wook Kim, U Kang, and Jiwoon Ha.

2016. PIN-TRUST: Fast Trust Propagation Exploiting Positive, Implicit, and

Negative Information. In Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management. ACM, 629–638.

[16] Kyomin Jung, Wooram Heo, and Wei Chen. 2012. IRIE: Scalable and Robust

Influence Maximization in Social Networks. In 12th IEEE International Conference
on Data Mining, ICDM 2012, Brussels, Belgium, December 10-13, 2012. 918–923.

[17] U Kang, D.H. Chau, and C. Faloutsos. 2010. Inference of Beliefs on Billion-Scale

Graphs. The 2nd Workshop on Large-scale Data Mining: Theory and Applications
(2010).

[18] U. Kang, Duen Horng Chau, and Christos Faloutsos. 2011. Mining large graphs:

Algorithms, inference, and discoveries. In Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany.
243–254.

[19] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. 2009. PEGASUS:

A Peta-Scale Graph Mining System. In ICDM 2009, The Ninth IEEE International
Conference on Data Mining, Miami, Florida, USA, 6-9 December 2009. 229–238.

[20] Danai Koutra, Tai-You Ke, U. Kang, Duen Horng Chau, Hsing-Kuo Kenneth

Pao, and Christos Faloutsos. 2011. Unifying Guilt-by-Association Approaches:

Theorems and Fast Algorithms. In ECML/PKDD (2). 245–260.
[21] Ho Lee, Bin Shao, and U Kang. 2015. Fast graph mining with HBase. Information

Sciences 315, 0 (2015), 56 – 66.

[22] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2009.

Community Structure in Large Networks: Natural Cluster Sizes and the Absence

of Large Well-Defined Clusters. Internet Mathematics 6, 1 (2009), 29–123.
[23] Yongsub Lim, U. Kang, and Christos Faloutsos. 2014. SlashBurn: Graph Compres-

sion and Mining beyond Caveman Communities. IEEE Trans. Knowl. Data Eng.
26, 12 (2014), 3077–3089.

[24] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale

graph processing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010.
135–146.

[25] Alexander Mendiburu, Roberto Santana, José Antonio Lozano, and Endika Ben-

goetxea. 2007. A parallel framework for loopy belief propagation. In Genetic and
Evolutionary Computation Conference, GECCO 2007, Proceedings, London, England,
UK, July 7-11, 2007, Companion Material. 2843–2850.

[26] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. 1999. Loopy Belief Propaga-

tion for Approximate Inference: An Empirical Study. In UAI ’99: Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden,
July 30 - August 1, 1999. 467–475.

[27] Huy Nguyen and Rong Zheng. 2012. Influence Spread in Large-Scale Social

Networks - A Belief Propagation Approach. In Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD 2012, Bristol, UK,
September 24-28, 2012. Proceedings, Part II. 515–530.

[28] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. 2007.

Netprobe: a fast and scalable system for fraud detection in online auction networks.
ACM, New York, New York, USA.

[29] Chiwan Park, Ha-Myung Park, Minji Yoon, and U. Kang. 2017. PMV: Pre-

partitioned Generalized Matrix-Vector Multiplication for Scalable Graph Mining.

CoRR abs/1709.09099 (2017).

[30] Ha-Myung Park, Chiwan Park, and U Kang. 2018. PegasusN: A Scalable and Ver-

satile Graph Mining System. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, February 2-7, 2018, New Orleans, Lousiana, USA.

[31] Adam Sadilek, Henry A. Kautz, and Jeffrey P. Bigham. 2012. Finding your friends

and following them to where you are. In Proceedings of the Fifth International
Conference on Web Search and Web Data Mining, WSDM 2012, Seattle, WA, USA,
February 8-12, 2012. 723–732.

[32] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.

The Hadoop Distributed File System. In IEEE 26th Symposium on Mass Storage
Systems and Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-7, 2010.
1–10.

[33] Acar Tamersoy, Kevin A. Roundy, and Duen Horng Chau. 2014. Guilt by associa-

tion: large scale malware detection by mining file-relation graphs. In The 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’14, New York, NY, USA - August 24 - 27, 2014. 1524–1533.

[34] Jiangtao Yin and Lixin Gao. 2014. Scalable Distributed Belief Propagation with

Prioritized Block Updates. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014. 1209–1218.

[35] Jaemin Yoo, Saehan Jo, and U. Kang. 2017. Supervised Belief Propagation: Scal-

able Supervised Inference on Attributed Networks. In IEEE 17th International
Conference on Data Mining, ICDM 2017, November 18-21, 2017, New Orleans, USA.

[36] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing. In Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012. 15–28.

[37] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In 2nd USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA, June
22, 2010.

[38] Jun Zou and Faramarz Fekri. 2013. A belief propagation approach for detecting

shilling attacks in collaborative filtering. In 22nd ACM International Conference
on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA,
October 27 - November 1, 2013. 1837–1840.


	Abstract
	1 Introduction
	2 Preliminaries and Related Works
	2.1 Loopy Belief Propagation
	2.2 Distributed Graph Processing

	3 Proposed Method
	3.1 DLBP: Overview
	3.2 DLBP: Belief Convergence Criterion
	3.3 DLBP: Skipping of Converged Vertices
	3.4 DLBP: Hub-oriented Scheduling
	3.5 Analysis of DLBP
	3.6 Implementation

	4 Experiments
	4.1 Experimental Settings
	4.2 Accuracy (Q1)
	4.3 Speed (Q2)
	4.4 Effects of Parameters in DLBP (Q3)
	4.5 Machine Scalability (Q4)

	5 Conclusion
	References

