Sampling Subgraphs with Guaranteed Treewidth for Accurate and Efficient Graphical Inference

Jaemin Yoo¹
jaeminyoo@snu.ac.kr

U Kang¹
ukang@snu.ac.kr

Mauro Scanagatta²
mscanagatta@fbk.eu

Giorgio Corani³
giorgio@idsia.ch

Marco Zaffalon³
zaffalon@idsia.ch

¹Seoul National University
²Fondazione Bruno Kessler
³IDSIA

OVERVIEW

- **Given** a large real-world graph $G = (V, E)$
- **Problem**: to sample a subgraph $U = (V, E')$ such that $E' \subseteq E$, which preserves the properties of G
- **Main idea**: to bound the treewidth of U to k
- **Source codes**: https://datalab.snu.ac.kr/btw

MOTIVATION

Graphical Inference
- Essential task for solving node classification
- Loopy belief propagation (LBP)
- Fast but runs approximate inference
- The junction tree algorithm (JT)
- Slow but runs exact inference
- Exponential complexity with treewidth (\mathcal{G})
- Treewidth: how much \mathcal{G} resembles a tree

Research Motivation
- Can we sample subgraphs with bounded TW?
 - JT on the subgraphs → **accurate** classification
 - LBP on the subgraphs → **fast** classification

PROPOSED APPROACH

Bounded Treewidth Sampling (BTW)
- Bounds the treewidth of subgraphs with k
- Maintains a k-tree K during a sampling process
- Use a score function m for sampling edges

Step 1: Initialization
- Given a graph G, BTW generate two graphs
 - A subgraph U_{k+1} having $k + 1$ nodes
 - A k-tree K_{k+1} which is a complete graph

Step 2: Incremental Updates
- Define a score function $m(u, C_k)$
 - u is a new node, and C_k is a k-clique in K_{k+1}
- Select $(u_{k+2}, C_k^*) = \arg\max_{u, C_k} m(u, C_k)$
- Connect u_{k+2} to C_k^* in both U_{k+1} and K_{k+1}

Experimental Setup
- Sample subgraphs using BTW (or others)
- Divide the labels for the k-fold validation
- Run JT or LBP for node classification
- **Datasets**: 4 real graphs with 2 – 16 labels
- **Evaluation**: classification accuracy & time

Effects for Node Classification

Comparison with Other Algorithms (by LBP)

<table>
<thead>
<tr>
<th>Method</th>
<th>Wikipedia</th>
<th>CoRA</th>
<th>PubMed</th>
<th>PolBlogs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE</td>
<td>35.3 ± 0.2</td>
<td>57.9 ± 0.3</td>
<td>61.8 ± 0.4</td>
<td>75.8 ± 1.0</td>
</tr>
<tr>
<td>RNE</td>
<td>51.3 ± 0.3</td>
<td>65.2 ± 0.2</td>
<td>71.1 ± 0.1</td>
<td>84.4 ± 0.6</td>
</tr>
<tr>
<td>HYB</td>
<td>49.4 ± 0.2</td>
<td>64.5 ± 0.2</td>
<td>69.8 ± 0.3</td>
<td>83.4 ± 0.4</td>
</tr>
<tr>
<td>RW</td>
<td>26.5 ± 2.7</td>
<td>43.0 ± 1.7</td>
<td>56.5 ± 1.2</td>
<td>65.2 ± 3.4</td>
</tr>
<tr>
<td>RJ</td>
<td>36.6 ± 0.4</td>
<td>55.4 ± 0.3</td>
<td>63.2 ± 0.4</td>
<td>75.6 ± 0.5</td>
</tr>
<tr>
<td>FS</td>
<td>29.8 ± 0.2</td>
<td>47.9 ± 0.2</td>
<td>56.2 ± 0.5</td>
<td>72.4 ± 0.8</td>
</tr>
<tr>
<td>FF</td>
<td>49.4 ± 0.2</td>
<td>63.7 ± 0.3</td>
<td>62.8 ± 0.4</td>
<td>79.8 ± 0.9</td>
</tr>
<tr>
<td>BTW</td>
<td>56.1 ± 0.5</td>
<td>68.6 ± 0.3</td>
<td>74.8 ± 0.4</td>
<td>86.6 ± 0.9</td>
</tr>
</tbody>
</table>

BEST: 66.0 ± 0.0 | 86.6 ± 0.0 | 86.6 ± 0.0 | 86.6 ± 0.0

Best trade-off of acc. and speed: BEST

Classifiction accuracy