Knowledge Extraction with No Observable Data

Jaemin Yoo, Minyong Cho, Taebum Kim, and U Kang

Data Mining Lab.
Seoul National University

NeurIPS 2019
Outline

- Introduction
- Proposed Approach
- Experimental Settings
- Experimental Results
- Conclusion
Model’s Knowledge

- Consider an ML model in supervised learning
 - Trained for a dataset \{ (x_i, y_i) | i = 1, 2, ... \}
 - Learned \(p(y|x) \) of a label \(y \) given a feature \(x \)

- It must have some knowledge about the data
 - *How much labels *\(y_1 \) *and *\(y_2 \) *are related*
 - *How much *\(x \) *is close to *\(y_1 \) *than to *\(y_2 \)
 - *How much *\(x_1 \) *and *\(x_2 \) *are close to each other*
 - *...*
Knowledge Distillation

- To transfer a model’s knowledge to another
 - Given a trained (teacher) model M_1
 - Given a target (student) model M_2
 - Feed a feature vector x_i to produce $\hat{y}_i = M_1(x_i)$
 - Train M_2 using \hat{y}_i as labels instead of true y_i

- Why does it work?
 - \hat{y} contains richer information than one-hot y
 - \hat{y} represents the knowledge of M_1 to be transferred
Knowledge without Data

- What happens when there are no data?
- Knowledge cannot be distilled
 - We cannot feed feature vectors to M_1
 - We cannot generate predictions of M_1
- We have no ideas about M_1’s knowledge
- The solution is knowledge extraction!
Estimating Data

- **Given**
 - A trained model M which maps x to y

- **Estimate**
 - The unknown distribution $p(x)$ of data points

- **Such that**
 - $p(x)$ is useful for distilling M’s knowledge
Knowledge Extraction

- **Given**
 - A trained model M which maps x to y

- **Generate**
 - A set $\mathcal{D} = \{(x_i, y_i) | i = 1, 2, \ldots\}$ of artificial data

- **Such that**
 - Every y_i is a (one-hot or soft) label vector
 - Every x_i has a high conditional probability $p(x_i | y_i)$
 - \mathcal{D} is useful for distilling M’s knowledge
Overview

- What does exacted knowledge look like?
- We are given a pre-trained ResNet14
 - Trained for the SVHN dataset of street digit images
- Our model generates the following images:
Outline

- Introduction
- **Proposed Approach**
- Experimental Settings
- Experimental Results
- Conclusion
Overall Structure

- **KegNet** (Knowledge Extraction with Generative Networks)
 - Consists of three types of neural networks
 - *Generator, classifier, and decoder* networks
Motivation (1)

- We introduce a latent variable $z \in \mathbb{R}^d$
- Our objective is to generate a dataset \mathcal{D}

\[\mathcal{D} = \left\{ \arg\max_{\hat{x}} p(\hat{x}|\hat{y}, \hat{z}) \mid \hat{y} \sim \hat{p}_y(y) \text{ and } \hat{z} \sim p_z(z) \right\} \]

- \hat{p}_y and p_z are proposed distributions for \hat{y} and z
Motivation (2)

- We approximate the argmax function as

\[
\arg\max_{\hat{x}} p(\hat{x}|\hat{y}, \hat{z}) \approx \arg\max_{\hat{x}} (\log p(\hat{y}|\hat{x}) + \log p(\hat{z}|\hat{x}))
\]

- Then, our model can be optimized as
 - Sampling \(\hat{y}\) and \(\hat{z}\) from \(\hat{p}_y\) and \(p_z\), resp.
 - Generating \(\hat{x}\) from sampled \(\hat{y}\) and \(\hat{z}\)
 - Reconstructing \(\hat{y}\) from \(\hat{x}\) (max. \(p(\hat{y}|\hat{x})\))
 - Reconstructing \(\hat{z}\) from \(\hat{x}\) (max. \(p(\hat{z}|\hat{x})\))
Training Process in Detail

- Sample \hat{y} and \hat{z} from simple distributions
- Convert variables by deep neural networks
 - **Generator** (to learn): $(\hat{y}, \hat{z}) \rightarrow \hat{x}$
 - **Decoder** (to learn): $\hat{x} \rightarrow \bar{z}$
 - **Classifier** (given and fixed): $\hat{x} \rightarrow \bar{y}$
- Train all networks by minimizing two losses
 - **Classifier loss**: the distance $\hat{y} \leftrightarrow \bar{y}$
 - **Decoder loss**: the distance $\hat{z} \leftrightarrow \bar{z}$
Sampling Variables

- Remember that we have no observable data
- We sample \hat{y} and \hat{z} from distributions \hat{p}_y and \hat{p}_z
 - Categorical and Gaussian distributions, resp.

```
\text{Generator } G \\
p(x|y, z) \\
\text{Decoder } D \\
p(z|x)
```

- Classifier M (fixed)
- Decoder loss
- Classifier loss
- Categorical and Gaussian distributions, resp.
Generator Network

- A generator network generates \hat{x} from \hat{y} and \hat{z}
- Its structure is based on DCGAN and ACGAN
 - Transposed convolutional layers and dense layers
Classifier Network

- The given network works here as evidence
- It reconstructs given \hat{y} based on its knowledge
 - This part is fixed (although it passes back-props)
Decoder Network

- A decoder network extracts given \hat{z} from \hat{x}
- Its structure is a simple multilayer perceptron
 - It solves the regression problem which is difficult
Reconstruction Losses

- Two reconstruction losses: \(\hat{y} \leftrightarrow \bar{y} \) and \(\hat{z} \leftrightarrow \bar{z} \)
 - Loss for \(y \): cross entropy between probabilities
 - Loss for \(z \): Euclidean distance between vectors
Data Diversity

- One problem exists in the current structure
 - The generated data have insufficient diversity!
- Diversity of data is important to our problem
 - The model should distill its knowledge to others
 - The dataset should cover a large data space
 - It will activate many combinations of neurons
Diversity Loss

- In each batch \mathcal{B}, we calculate a new loss

$$l_{\text{div}}(\mathcal{B}) = \exp \left(- \sum_{(\hat{z}_1, \hat{x}_1)} \sum_{(\hat{z}_2, \hat{x}_2)} \| \hat{z}_1 - \hat{z}_2 \| \cdot d(\hat{x}_1, \hat{x}_2) \right)$$

- $d(\cdot)$ is a distance function between two x’s
- Includes distances between all pairs of x’s
 - But, it is multiplied by $\| \hat{z}_1 - \hat{z}_2 \|$
 - When z’s are distant, then x’s should be distant too
Overall Loss Function

The overall loss function is given as follows:

\[l(\mathcal{B}) = \sum_{(\hat{y}, \hat{z})} (l_{\text{cls}}(\hat{y}, \hat{z}) + \alpha l_{\text{dec}}(\hat{y}, \hat{z})) + \beta l_{\text{div}}(\mathcal{B}) \]

- \(l_{\text{cls}} \) denotes the classification loss
- \(l_{\text{dec}} \) denotes the decoder loss
- \(\alpha \) and \(\beta \) are hyperparameters adjusting the balance
Outline

- Introduction
- Proposed Approach
- **Experimental Settings**
- Experimental Results
- Conclusion
Evaluation

- We apply our model to **model compression**
 - The problem of reducing the size of a network
- **Given** a trained model M
- **Return** a compressed model S
 - S has fewer parameters than M has
 - S shows comparable accuracy to that of M
Tucker Decomposition

- Use **Tucker decomposition** for compression
 - Factorizes a large tensor into low-rank tensors
 - Has been applied to compress CNNs or RNNs
- Compression by Tucker
 - Initialize a new network with decomposed weights
 - Fine-tune the new network with training data
Baseline Approaches

- In our case, we modify the fine-tuning step
 - Because we have no training data available
- We propose three baseline approaches
 - **Tucker (T)** does not fine-tuning at all
 - **T+Uniform** estimates p_x as the uniform dist.
 - **T+Normal** estimates p_x as the normal dist.
- **KegNet** uses artificial data in fine-tuning
 - 5 generators are trained to produce data
Datasets

- We use two kinds of datasets in experiments
 - **Unstructured datasets** from the UCI repo.
 - Famous **Image datasets** for classification

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Features</th>
<th>Labels</th>
<th>Training</th>
<th>Valid.</th>
<th>Test</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shuttle</td>
<td>8</td>
<td>7</td>
<td>38,062</td>
<td>5,438</td>
<td>14,500</td>
<td>Unstructured</td>
</tr>
<tr>
<td>PenDigits</td>
<td>16</td>
<td>10</td>
<td>6,557</td>
<td>937</td>
<td>3,498</td>
<td>Unstructured</td>
</tr>
<tr>
<td>Letter</td>
<td>16</td>
<td>26</td>
<td>14,000</td>
<td>2,000</td>
<td>4,000</td>
<td>Unstructured</td>
</tr>
<tr>
<td>MNIST</td>
<td>$1 \times 28 \times 28$</td>
<td>10</td>
<td>55,000</td>
<td>5,000</td>
<td>10,000</td>
<td>Grayscale images</td>
</tr>
<tr>
<td>Fashion MNIST</td>
<td>$1 \times 28 \times 28$</td>
<td>10</td>
<td>55,000</td>
<td>5,000</td>
<td>10,000</td>
<td>Grayscale images</td>
</tr>
<tr>
<td>SVHN</td>
<td>$3 \times 32 \times 32$</td>
<td>10</td>
<td>68,257</td>
<td>5,000</td>
<td>26,032</td>
<td>RGB images</td>
</tr>
</tbody>
</table>
Target Classifiers

- We use classifiers according to the datasets
 - These classifiers are our targets of compression

- Unstructured datasets
 - Multilayer perceptrons of 10 layers
 - 128 units, ELU activations and dropouts

- Image datasets
 - LeNet5 for MNIST
 - ResNet14 for Fashion MNIST and SVHN
Outline

- Introduction
- Proposed Approach
- Experimental Settings
- Experimental Results
- Conclusion
Summary

- Three ways of experiments are done

 - Quantitative results
 - *Done for the unstructured & image datasets*
 - Compare accuracy and compression ratios

 - Qualitative results
 - *Done for the image datasets*
 - Visualize generated data changing \hat{y} and \hat{z}
Quantitative Results (1)

- KegNet outperforms the baselines consistently
- The compression ratios are between $4\times$ and $8\times$
- T+Gaussian works relatively well
 - Because the features are already standardized
 - Even a Gaussian covers most of the feature space

<table>
<thead>
<tr>
<th>Model</th>
<th>Approach</th>
<th>Shuttle</th>
<th>Pendigits</th>
<th>Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>Original</td>
<td>99.83%</td>
<td>96.56%</td>
<td>95.63%</td>
</tr>
<tr>
<td>MLP</td>
<td>Tucker (T)</td>
<td>75.49% ($8.17\times$)</td>
<td>26.44% ($8.07\times$)</td>
<td>31.40% ($4.13\times$)</td>
</tr>
<tr>
<td>MLP</td>
<td>T+Uniform</td>
<td>93.83 ± 0.13%</td>
<td>80.21 ± 0.98%</td>
<td>62.50 ± 0.90%</td>
</tr>
<tr>
<td>MLP</td>
<td>T+Gaussian</td>
<td>94.00 ± 0.06%</td>
<td>78.22 ± 1.74%</td>
<td>76.80 ± 1.84%</td>
</tr>
<tr>
<td>MLP</td>
<td>T+KegNet</td>
<td>94.21 ± 0.03%</td>
<td>82.62 ± 1.05%</td>
<td>77.73 ± 0.33%</td>
</tr>
</tbody>
</table>
Quantitative Results (2)

- Results are much better in the image datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Model</th>
<th>Approach</th>
<th>Student 1</th>
<th>Student 2</th>
<th>Student 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>LeNet5</td>
<td>Original</td>
<td>98.90%</td>
<td>98.90%</td>
<td>98.90%</td>
</tr>
<tr>
<td>MNIST</td>
<td>LeNet5</td>
<td>Tucker (T)</td>
<td>85.18% (3.62×)</td>
<td>67.35% (4.10×)</td>
<td>50.01% (4.49×)</td>
</tr>
<tr>
<td>MNIST</td>
<td>LeNet5</td>
<td>T+Uniform</td>
<td>95.48 ± 0.11%</td>
<td>88.27 ± 0.07%</td>
<td>69.89 ± 0.28%</td>
</tr>
<tr>
<td>MNIST</td>
<td>LeNet5</td>
<td>T+Gaussian</td>
<td>95.45 ± 0.15%</td>
<td>87.70 ± 0.12%</td>
<td>71.76 ± 0.18%</td>
</tr>
<tr>
<td>MNIST</td>
<td>LeNet5</td>
<td>T+KEGNET</td>
<td>96.32 ± 0.05%</td>
<td>90.89 ± 0.11%</td>
<td>89.94 ± 0.08%</td>
</tr>
<tr>
<td>SVHN</td>
<td>ResNet14</td>
<td>Original</td>
<td>93.23%</td>
<td>93.23%</td>
<td>93.23%</td>
</tr>
<tr>
<td>SVHN</td>
<td>ResNet14</td>
<td>Tucker (T)</td>
<td>19.31% (1.44×)</td>
<td>11.02% (1.65×)</td>
<td>11.07% (3.36×)</td>
</tr>
<tr>
<td>SVHN</td>
<td>ResNet14</td>
<td>T+Uniform</td>
<td>33.08 ± 1.47%</td>
<td>63.08 ± 1.77%</td>
<td>23.83 ± 1.86%</td>
</tr>
<tr>
<td>SVHN</td>
<td>ResNet14</td>
<td>T+Gaussian</td>
<td>26.58 ± 1.61%</td>
<td>60.22 ± 4.17%</td>
<td>21.49 ± 2.96%</td>
</tr>
<tr>
<td>SVHN</td>
<td>ResNet14</td>
<td>T+KEGNET</td>
<td>69.89 ± 1.24%</td>
<td>87.26 ± 0.46%</td>
<td>63.40 ± 1.80%</td>
</tr>
<tr>
<td>Fashion</td>
<td>ResNet14</td>
<td>Original</td>
<td>92.50%</td>
<td>92.50%</td>
<td>92.50%</td>
</tr>
<tr>
<td>Fashion</td>
<td>ResNet14</td>
<td>Tucker (T)</td>
<td>65.09% (1.40×)</td>
<td>75.80% (1.58×)</td>
<td>46.55% (2.90×)</td>
</tr>
<tr>
<td>Fashion</td>
<td>ResNet14</td>
<td>T+Uniform</td>
<td>< 65.09%</td>
<td>< 75.80%</td>
<td>< 46.55%</td>
</tr>
<tr>
<td>Fashion</td>
<td>ResNet14</td>
<td>T+Gaussian</td>
<td>< 65.09%</td>
<td>< 75.80%</td>
<td>< 46.55%</td>
</tr>
<tr>
<td>Fashion</td>
<td>ResNet14</td>
<td>T+KEGNET</td>
<td>85.23 ± 1.36%</td>
<td>87.80 ± 0.31%</td>
<td>79.95 ± 1.36%</td>
</tr>
</tbody>
</table>
Two main observations from the results

Large improvements in **complicated datasets**
- MNIST < Fashion MNIST < SVHN
- Competitors even can decrease the accuracy
- Because the manifolds are difficult to capture

Large improvements in **high compression rates**
- Because they require better samples
Qualitative Results (1)

- Generated images contain recognizable digits
- SVHN looks more clear than MNIST
 - Because the manifold of SVHN is more predictable
 - The digits of MNIST are more diverse (handwritten)
Qualitative Results (2)

- The variable z gives randomness to images
 - The images seem noisy when $z = 0$
 - The images seem organized when averaged by z
- The 5 generators have different properties

(b) SVHN ($z = 0$).
(c) SVHN (averaged by z).
Qualitative Results (3)

- Our generator can take soft distributions of \hat{y}
 - We change \hat{y} from 0 to 5 to see the differences
 - The amount of evidence changes slowly
 - An image becomes like 5 from a certain point

(c) SVHN (averaged by z).
(d) Latent space walking from 0 to 5 in SVHN.
Outline

- Introduction
- Proposed Approach
- Experimental Settings
- Experimental Results
- Conclusion
Conclusion

- We propose KegNet for data-free distillation
 - Knowledge extraction with generative networks
 - It enables knowledge distillation even without data
- KegNet consists of three deep neural networks
 - Classifier network which is given and fixed
 - Generator network for generating artificial data
 - Decoder network for capturing latent variables
- KegNet outperforms all baselines significantly
 - Experiments on unstructured and image datasets
Thank you!

https://github.com/snudatalab/KegNet