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== Semi-Supervised Learning

m Semi-supervised learning
o Leverage unlabeled data for better performance
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s Graph-based semi-supervised learning
o Focus on the data represented as graphs
0 Easy to capture relationships between examples

Image from https://en.wikipedia.org/wiki/Semi-supervised_learning
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= Graph-Based Learning

m Basic assumption of graph-based learning
0 Nearby examples are correlated positively

s Model the correlations by neural networks
2 GCN (ICLR’17), GAT (ICLR’18), ...

A data example

/ (labeled or not)

Instances 1 and 2 are correlated
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= Motivation

m Previous works have naive assumptions
m 1) A graph is given also at the test time
0 No graphs in real-time classification

m 2) Every node has enough neighborhoods
o No neighbors for fresh users or items

How to address these limitations?
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= Problem Definition

s Problem: hard inductive learning

s Given

o An undirected graph G
= Each node is an example (x,y) or (x,)

o Labels of only a subset of nodes

s Learn

0 Aclassifier f:x -y
s Predicts each example independently
s Does not require the graph at the test time
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= Belief Propagation Network

m Novel approach for hard inductive learning
m Separates classification and diffusion steps

m Classification

o Classify each node i independently by f(x;)
o The graph structure is not considered at all

s Diffusion
o Diffuse the predictions through the graph
o Update f based on the results of diffusion
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= Classification: MLP

m Any model can be used as a classifier f

m Our choice is a multilayer perceptron (MLP)

0 Single hidden layer of 64 units
o Tanh as an activation function

¢; = softmax(W, (tanh(W;x; + b;)) + b,)

m Produce a probability vector ¢; for node i
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- Diffusion: LBP

s Run loopy belief propagation for diffusion

0 Takes predictions of f as priors of nodes
0 Propagates the priors and computes beliefs

Belief: RED

Belief: BLUE
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= Forward Propagation

s Computes the prior ¢p; = f(x;) of node i

m Diffuses the priors by running LBP
a0 The belief b; of each node i is computed
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= Backward Propagation

s Compute two loss functions [. and [,
0 Classification loss [ for the labeled nodes
o Induction loss [; for the unlabeled nodes

m f is updated to minimize the sum of [, and [,

’-----—----——-_-_---—-_---—---_---——-------—-----—-_-‘
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Loss Functions

m Classification loss

o Typical loss function for classification
0 Cross-entropy between labels and beliefs

m Induction loss

0 Our proposed loss for unlabeled nodes
o KL-divergence between beliefs and priors
o Make f learn the results of LBP as soft labels
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Aol Datasets

m Solve node classification on four datasets

o Three datasets are citation graphs
m Classify the area of each research article

o The other is an Amazon graph of items
m 20 labeled examples for each class

Name Nodes Edges Attributes Labels

Pubmed! 19,717 44,324 500 3
Cora’ 2,708 5,278 1,433 7
Citeseer! 3,327 4,552 3,703 6
Amazon 32,966 63,285 3,000 3
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Classification Accuracy

m BPN shows the best classification accuracy

Method Pubmed Cora Citeseer Amazon

Planetoid 746 0.5 662+09 668+10 70.1+1.9
GCN-I 74.1 £0.2 67.8+06 63.6 05 765+03
SEANO 757 +04 645+12 663+08 786406
GAT 76.5+04 70.14+10 66710 77.5+04
BPN (ours) | 783 +0.3 722+05 70.1+09 815+1.3
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Loss Values

m BPN minimizes the two loss functions

Loss (relative values)

—-— Loss [, — Loss [, ---- Validation accuracy
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Conclusion

s \We solve the hard inductive leaning
o A graph is not given at the test time

m We propose a belief propagation network
o Classify each node by a classifier f

o Diffuse the predictions (or priors) by LBP
o Update f by minimizing two loss functions

s BPN outperforms the SOTA approaches
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Thank you !

https://datalab.snu.ac.kr/bpn
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