EDiT: Interpreting Ensemble Models via Compact Soft Decision Trees

Jaemin Yoo
Seoul National University
Seoul, South Korea

Lee Sael
Ajou University
Suwon, South Korea

ICDM 2019
Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion
Black Box Models

- Most ML models are *black boxes*
 - Learned structures are random and complex
 - Their decisions are not explainable

Image from https://www.investopedia.com/terms/b/blackbox.asp
Interpretable ML

- Research to interpret a model’s decisions
 - Important when each decision is irreversible
- Two types of interpretable models:
 - *Linear models*
 - *Decision trees*
- However, their accuracy is not good
Ensemble Models

- **Ensemble models**
 - Combine the predictions of weak models
 - Produce robust and accurate predictions

- However, they have **low interpretability**
 - Decisions are made by hundreds of learners

Image from https://dsc-spidal.github.io/harp/docs/examples/RF/
Problem Definition

- **Given** a trained ensemble model M
- **Train** an *interpretable* classifier S
- **Such that**
 - S achieves similar accuracy to M
 - S contains fewer parameters than M
Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion
Proposed Method

- **Ensemble to Distilled Tree (EDiT)**
 - Given an ensemble model
 - Trains a *compact* soft decision tree
 - Interpretable & more efficient than SDTs

- **EDiT** is based on three main ideas
 - **Idea 1:** Knowledge distillation
 - **Idea 2:** Weight sparsification
 - **Idea 3:** Tree pruning
Preliminary: SDTs

- SDTs are interpretable tree-based models
 - Each internal node is a linear classifier
 - Each leaf node learns a probability distribution

![Diagram of Soft Decision Trees](image)

Image from “Rule-Extraction from Soft Decision Trees” (L. Huang, M. Hsieh, and M. Rajati, BDAI 2019)
Idea 1: Distillation

- **Knowledge distillation**
 - Transfers the knowledge of a teacher to a student
- Replace the labels y in training data \mathcal{D} as

$$ y_i \leftarrow \frac{M(x_i) + y_i}{2} \text{ for each } (x_i, y_i) \text{ in } \mathcal{D} $$

- x_i is a feature vector that corresponds to y_i
Idea 2: Sparse Weights (1)

- **Weight sparsification**
 - Improves the efficiency by sparse weights

- Propose three different approaches
 - 1) **L1 regularization**
 - Adds an L1 regularizer to the loss function
 - 2) **Weight masking**
 - Inactivates randomly some of the weights
 - 3) **Weight pruning**
 - Prunes weights whose learned values are small
Idea 2: Sparse Weights (2)

- **Weight masking**: 2 steps
 - Random masking
 - Training

- **Weight pruning**: 3 steps
 - Pre-training
 - Pruning
 - Fine-tuning
Idea 3: Tree Pruning

- **Tree pruning**
 - Removes nodes of small arrival probabilities
 - Enables a large depth to be adopted

- Tree pruning vs. weight pruning
 - Weight pruning removes redundant weights
 - Tree pruning removes redundant tree nodes
Summary

- Result of applying our ideas to an SDT

 - Sparse weights from sparsification
 - Narrow tree structure from tree pruning
Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion
Does EDiT outperform the baselines?

EDiT shows the best balance in all cases

- High accuracy with only a few parameters
Sparsification Methods

- Which is the best sparsification method?
 - **Weight pruning** works generally the best
 - L1 regularization fails even with large λ

![Graphs showing comparison of different sparsification methods]

Jaemin Yoo (SNU)
Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion
Conclusion

- **Ensemble to Distilled Tree (EDiT)**
 - Our approach to interpret ensemble models
 - **Idea 1:** Knowledge distillation
 - **Idea 2:** Weight sparsification
 - **Idea 3:** Tree pruning
 - **EDiT** gives the most efficient predictions
 - **Accuracy:** $\text{DT} \ll \text{RF} \approx \text{SDT} \approx \text{EDiT}$
 - **Parameters:** $\text{DT} \approx \text{EDiT} \ll \text{SDT} < \text{RF}$
Thank you!

GitHub: https://github.com/leesael/EDiT